Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22060298-7    https://doi.org/10.11896/cldb.22060298
  无机非金属及其复合材料 |
阴极辉光放电电解制备纳米ZnO
陆泉芳1,2,*, 郝小霞1, 冯妍1, 马晓娟1, 王波1, 俞洁1
1 西北师范大学化学化工学院,兰州 730070
2 西北师范大学学报编辑部,兰州 730070
Synthesis of ZnO Nanoparticles by Cathode Glow Discharge Electrolysis
LU Quanfang1,2,*, HAO Xiaoxia1, FENG Yan1, MA Xiaojuan1, WANG Bo1, YU Jie1
1 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
2 Editorial Department of the University Journal, Northwest Normal University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 18801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Pt针为阴极,Zn片为阳极,2 g/L Na2SO4溶液为电解质,在530~650 V放电电压下,利用阴极辉光放电电解(CGDE)技术一步制得纳米ZnO颗粒。用XRD、SEM、FTIR、XPS等对产物的结构、组成和形貌进行了表征,利用UV-Vis DRS计算了纳米ZnO 颗粒的带隙能,用UV-Vis研究了纳米ZnO粒子光催化降解亚甲基蓝(MB)的行为,并探讨了其制备机理。结果表明,580 V下得到的纳米ZnO颗粒有一定的团聚,加入表面活性剂聚乙烯吡咯烷酮(PVP)能够抑制纳米ZnO颗粒的团聚;材料的形貌随PVP浓度和放电电压的变化而变化。当电压为530 V、加入0.003 1% (质量分数)的PVP时,得到尺寸约200 nm、带隙能为3.22 eV的纺锤状纳米ZnO;随电压升高,颗粒尺寸分布越宽。在紫外光照射30 min后,加入PVP所制备的ZnO光催化降解MB的降解率由78.5%提高到87.3%,说明加入PVP后制备的ZnO光催化性能更优。CGDE制备纳米ZnO的机理为:放电过程中阳极Zn片氧化溶解为Zn2+,然后Zn2+迁移到阴极辉光区,与等离子体-液体界面产生的OH-反应生成[Zn(OH)4]2-,最后[Zn(OH)4]2-从等离子体-液体界面区转移到溶液中,产生ZnO晶粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆泉芳
郝小霞
冯妍
马晓娟
王波
俞洁
关键词:  阴极辉光放电电解(CGDE)  等离子体  纳米氧化锌    
Abstract: In this work, ZnO nanoparticles (ZnO NPs) were prepared by one-step method using cathode glow discharge electrolysis (CGDE) in 2.0 g/L Na2SO4 solution at 530—650 V discharge voltage, in which Zn foil and Pt needle point were served as anode and cathode, respectively. The structure, component and morphology of ZnO NPs were characterized by XRD, SEM, FTIR and XPS. The band gap energy of ZnO NPs was calculated based on UV-Vis DRS. The photocatalytic property of ZnO NPs for the degradation of MB was investigated by using UV-Vis. A possible preparation mechanism of ZnO NPs under CGDE was also proposed. The results showed that the ZnO NPs prepared at 580 V have a certain agglomeration, and adding PVP can reduce the agglomeration. The morphology of ZnO NPs is changed with the concentration of PVP and the applied voltage. At 530 V applied voltage and adding 0.003 1% PVP, spindle ZnO NPs with particle sizes of about 200 nm and band gap of 3.22 eV are successfully prepared by CGDE. Meanwhile, the particle size distribution widens with the increase of voltage. After 30 min UV irradiation, the degradation rate of ZnO with PVP increases from 78.5% to 87.3%, indicating that the photocatalytic property of ZnO NPs with PVP is markedly superior to that of ZnO NPs without adding PVP. The synthesis mechanism of ZnO NPs by CGDE is as follows: the anode Zn foil is oxidized to produce Zn2+, and then migrate to the cathode glow discharge region. After that, [Zn(OH)4]2- is generated by the reaction with the OH-produced in the plasma region and Zn2+. Finally, [Zn(OH)4]2- is transferred from the plasmas-liquid interface into the solution to form ZnO NPs.
Key words:  cathode glow discharge electrolysis (CGDE)    plasma    ZnO nanoparticles
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ132.41  
基金资助: 国家自然科学基金(21961032); 甘肃省自然科学基金(21JR7RA130;21JR7RA126)
通讯作者:  *陆泉芳,西北师范大学学报编辑部编审,西北师范大学化学化工学院硕士研究生导师。2000年6月、2003年6月、2012年6月分别于西北师范大学化学化工学院获得学士、硕士和博士学位,主要从事低温等离子体化学、原子发射光谱分析、新能源材料化学、水处理技术等方面的研究工作。发表论文50余篇,其中包括Chemical Engineering Journal、Electrochimica Acta、Journal of Alloys and Compounds、Plasma Processes Polymer、Spectrochimica Acta Part B、Microchemical Journal、《化工学报》等。luqf@nwnu.edu.cn   
引用本文:    
陆泉芳, 郝小霞, 冯妍, 马晓娟, 王波, 俞洁. 阴极辉光放电电解制备纳米ZnO[J]. 材料导报, 2024, 38(13): 22060298-7.
LU Quanfang, HAO Xiaoxia, FENG Yan, MA Xiaojuan, WANG Bo, YU Jie. Synthesis of ZnO Nanoparticles by Cathode Glow Discharge Electrolysis. Materials Reports, 2024, 38(13): 22060298-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060298  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22060298
1 Peng Z W, Liu Z Y, Fu G. Materials Reports, 2017, 31(5), 16 (in Chinese).
彭智伟, 刘志宇, 傅刚. 材料导报, 2017, 31(5), 16.
2 Li D, Zhang M H, Liao P Z, et al. Materials Reports, 2019, 33(1), 56 (in Chinese).
李丹, 张忞灏, 廖佩姿, 等. 材料导报, 2019, 33(1), 56.
3 Wang Z M, Tang X C, Xiao Y H, et al. Fine Chemicals, 2011, 28(5), 428 (in Chinese).
王志敏, 唐新村, 肖元化, 等. 精细化工, 2011, 28(5), 428.
4 Gao R, Gao S, Wang P, et al. Sensors and Actuators B: Chemical, 2020, 303, 127085.
5 Chen C C, Liu P, Lu C H. Chemical Engineering Journal, 2008, 144(3), 509.
6 Ates T, Tatar C, Yakuphanoglu F. Sensors and Actuators A: Physical, 2013, 190, 153.
7 Kontopoulou I, Angelopoulou A, Bouropoulos N. Materials Letters, 2016, 165, 87.
8 Alammar T, Mudringudring A V. ChemSusChem, 2011, 4(12), 1796.
9 Meng A L, Lin Y S, Wang G X. Chinese Journal of Inorganic Chemistry, 2005, 21(4), 583 (in Chinese).
孟阿兰, 蔺玉胜, 王光信. 无机化学学报, 2005, 21(4), 583.
10 Liu H, Wei S S, Huang X J, et al. Applied Chemical Industry, 2021, 50(5), 1361 (in Chinese).
刘惠, 魏珊珊, 黄晓菁, 等. 应用化工, 2021, 50(5), 1361.
11 Sengupta S K, Singh R. Sources Science and Technology, 2017, 26(1), 015005.
12 Wang X Y, Zhou M H, Jin X L. Electrochimica Acta, 2012, 83, 501.
13 Brisset J L, Moussa D, Doubla A, et al. Industrial & Engineering Che-mistry Research, 2008, 47(16), 5761.
14 Lu Q F, Yu J, Yang C L, et al. CIESC Journal, 2018, 69(6), 2664 (in Chinese).
陆泉芳, 俞洁, 杨彩玲, 等. 化工学报, 2018, 69(6), 2664.
15 Lu Q F, Yu J, Gao J Z, et al. Plasma Processes and Polymers, 2011, 8(9), 803.
16 Friedrich J F, Mix R, Schulze R D, et al. Plasma Processes and Polymers, 2008, 5(5), 407.
17 Lu Q F, Yang S X, Sun D X, et al. Spectrochimica Acta B, 2016, 125, 136.
18 Lu Q F, Feng F F, Yin L, et al. Journal of Northwest Normal University (Natural Science), 2019, 55(1), 61 (in Chinese).
陆泉芳, 冯菲菲, 银玲, 等. 西北师范大学学报(自然科学版), 2019, 55(1), 61.
19 Hu C C, Lu L, Zhu Y J, et al. Materials Chemistry and Physics, 2018, 217, 182.
20 Zhu L, Li Y, Zeng W. Applied Surface Science, 2018, 427(B), 281.
21 Lei C S, Pi M, Jiang C J, et al. Journal of Colloid and Interface Science, 2017, 490, 242.
22 Dai K, Zhu G P, Liu Z L, et al. Materials Letters, 2012, 67(1), 193.
23 Saito G, Hosokai S, Akiyama T. Materials Chemistry and Physics, 2011, 130(1-2), 79.
24 Yogamalar N, Bose A. Journal of Solid State Chemistry, 2011, 184(1), 12.
25 Hsieh C H. Journal of the Chinese Chemical Society, 2007, 54(1), 31.
26 Gancheva M, Markova-Velichkova M, Atanasova G, et al. Applied Surface Science, 2016, 368, 258.
27 Bhujela R, Raia S, Swain B P. Materials Science in Semiconductor Processing, 2019, 102, 104592.
28 Song X C, Xu Z D, Chen W X, et al. Chinese Journal of Inorganic Chemistry, 2004, 20(2), 186 (in Chinese).
宋旭春, 徐铸德, 陈卫祥, 等. 无机化学学报, 2004, 20(2), 186.
29 Al-Gaashani R, Radiman S, Daud A R, et al. Ceramics International, 2013, 39(3), 2283.
30 Dupin J C, Gonbeau D, Vinatier P, et al. Physical Chemistry Chemical Physics, 2000, 2, 1319.
31 Liu G, Wang G H, Hu Z H, et al. Applied Surface Science, 2019, 465, 902.
32 Lv Y Y, Yu L S, Huang H Y, et al. Nanotechnology, 2012, 23(6), 065402.
33 Mika K, Socha R P, Nyga P, et al. Electrochimica Acta, 2019, 305, 349.
34 Lu Q F, Li J L, Wang B, et al. Plasma Processes and Polymers, 2022, 19(6), 2100172.
35 Saito G, Nakasugi Y, Yamashita T, et al. Applied Surface Science, 2014, 290, 419.
36 Li S J, Wang C C, Cai M J, et al. Chemical Engineering Journal, 2022, 428, 131158.
37 Yu J, Zhang X M, Lu Q F, et al. Talanta, 2017, 175, 150.
38 Nomura S, Mukasa S, Toyota H, et al. Plasma Sources Science and Technology, 2011, 20(3), 034012.
39 Cui J H, Xu Z F, Zhang J L, et al. Science in China Series G, 2008, 38(8), 1053 (in Chinese).
崔锦华, 徐振锋, 张家良, 等. 中国科学: G辑, 2008, 38(8), 1053.
40 Chen Q, Li J S, Li Y F. Journal of Physics D: Applied Physics, 2015, 48(42), 424005.
[1] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[2] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[3] 闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
[4] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[5] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[6] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[7] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[8] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[9] 张达, 张传琪, 李少龙, 何燕. 等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展[J]. 材料导报, 2022, 36(24): 21030319-9.
[10] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[11] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[12] 吕秀娟, 唐晓龙, 易红宏, 赵顺征, 任晨阳. 微波诱导催化反应在环境净化中的应用研究进展[J]. 材料导报, 2022, 36(18): 20100163-9.
[13] 卫新宇, 张文瑾, 陈龙威, 刘成周, 林启富, 江贻满, 王晓洁. 碳纤维石墨化技术综述[J]. 材料导报, 2022, 36(17): 20120255-8.
[14] 刘员环, 曾美琴, 鲁忠臣, 朱敏. 等离子球磨技术在材料制备中的应用[J]. 材料导报, 2022, 36(15): 20120251-9.
[15] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed