Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22040306-7    https://doi.org/10.11896/cldb.22040306
  无机非金属及其复合材料 |
基于有限元和分子模拟的热再生沥青激活行为研究
朱雅婧1, 徐光霁1,*, 马涛1, 范剑伟1, 胡靖1,2
1 东南大学交通学院,南京 211189
2 南京现代综合交通实验室,南京 211100
Finite Element and Molecular Simulation on Activation Behavior of Hot Rejuvenated Asphalt
ZHU Yajing1, XU Guangji1,*, MA Tao1, FAN Jianwei1, HU Jing1,2
1 School of Transportation, Southeast University, Nanjing 211189, China
2 Nanjing Modern Multimodal Transportation Laboratory, Nanjing 211100, China
下载:  全 文 ( PDF ) ( 8479KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 老化沥青的有效激活是影响热再生沥青及混合料性能的关键因素。本工作结合沥青路面就地热再生实体工程,采用有限元方法分析了再生沥青面层摊铺后的冷却过程,获取再生沥青混合料的降温曲线。设计双层扩散试验,研究了再生剂向老化沥青中的扩散规律,并采用分子动力学方法模拟了再生剂与新旧沥青的混溶行为,探讨了温度场、扩散时间和再生剂组分等因素对老化沥青激活再生行为的影响。结果表明,再生沥青面层不同深度处新旧沥青和再生剂之间的扩散存在差异,且短期内难以消除。范德华力是新旧沥青间的主要相互作用,再生剂降低了新旧沥青分子间的范德华力并促进了其相互扩散,扩大了沥青混溶区范围。相比于再生剂中的芳香烃组分,链烃组分更利于减小新旧沥青分子间的范德华力,但提高新旧沥青扩散系数的效果有限。再生剂掺量对提升老化沥青的激活效果存在显著的边际效应递减现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱雅婧
徐光霁
马涛
范剑伟
胡靖
关键词:  热再生  再生剂  激活行为  有限元  分子动力学    
Abstract: The activation behavior of aged asphalt is a key factor affecting the performance of the hot recycled asphalt and mixture.Based on onehot in-place recycling project of asphalt pavement, the finite element method was applied to analyze the cooling process of the recycled asphalt surface layer after paving, and the cooling curve of the recycled asphalt mixture was obtained.The double-layer diffusion experiment was designed to study the diffusion law of rejuvenator into the aged asphalt, and the mixing behavior of rejuvenator with virgin and aged asphalt was simulated by the molecular dynamics simulation.The effects of the temperature field, diffusion time and rejuvenator composition on the recycling activation behavior of aged asphalt were discussed.Results show that there are differences in diffusion between virgin asphalt, aged asphalt and rejuvenator at different depths of the recycled asphalt surface layer, which is difficult to eliminate in a short term.The van der Waals force is the main interaction between virgin and aged asphalt.The rejuvenator reduces the van der Waals force between virgin and aged asphalt molecules, which promotes their mutual diffusion and expands the range of the asphalt mixing zone.Compared with the aromatic hydrocarbon component in the rejuvenator, the chain hydrocarbon component is more conducive to reducing the van der Waals forces between virgin and aged asphalt molecules, but its effect of improving the diffusion coefficient of virgin and aged asphalt is limited.The rejuvenator content has a significant marginal utility reduction phenomenon on the activation effect of the aged asphalt.
Key words:  hot recycling    rejuvenator    activation behavior    finite element method    molecular dynamics
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  U414  
基金资助: 国家自然科学基金(51808116); 南京市重大科技专项(202209012); 江苏省自然科学基金(BK20221468);国家资助博士后研究人员计划资助项目(GZC20230432);江苏省卓越博士后计划资助项目(2023ZB519)
通讯作者:  *徐光霁,东南大学交通学院副教授,博士研究生导师,2009年和2012年于武汉理工大学分别获得工学学士学位和硕士学位,2017年于美国罗格斯大学获得博士学位。主要研究领域为功能型道路材料研发、沥青路面再生利用技术、固废资源化利用技术、道路材料多尺度数值模拟计算。近5年来公开发表学术论文30余篇,授权国家发明专利5项。guangji_xu@seu.edu.cn   
作者简介:  朱雅婧,东南大学交通学院助理研究员,2018年和2022年于东南大学交通学院分别获得学士与博士学位。主要研究领域为改性沥青老化与再生、沥青材料多尺度分析与仿真模拟。公开发表学术论文10余篇,授权国家发明专利5项。
引用本文:    
朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
ZHU Yajing, XU Guangji, MA Tao, FAN Jianwei, HU Jing. Finite Element and Molecular Simulation on Activation Behavior of Hot Rejuvenated Asphalt. Materials Reports, 2024, 38(13): 22040306-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040306  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22040306
1 Wei W, Guo P, Tang B. Materials Reports, 2017, 31(11), 109 (in Chinese).
韦万峰, 郭鹏, 唐伯明. 材料导报, 2017, 31(11), 109.
2 Guo P, Xie F, Meng J, et al. Materials Reports, 2020, 34(13), 13100(in Chinese).
郭鹏, 谢凤章, 孟建玮, 等. 材料导报, 2020, 34(13), 13100.
3 Doh Y, Amirkhanian S, Kim K. Construction and Building Materials, 2008, 22(6), 1253.
4 Xu G, Wang H, Sun W. Construction and Building Materials, 2018, 158, 1046.
5 Lin J, Hong J, Chong H, et al. Construction and Building Materials, 2014, 55, 63.
6 Kuang D, Liu W, Xiao Y, et al. Construction and Building Materials, 2019, 223, 986.
7 Shateyi S, Mabood F, Lorenzini G. Journal of Engineering Thermophysics, 2017, 26(1), 39.
8 Crank J. 1975. The mathematics of diffusion, 2nd edition, Oxford, Clarendon Press.
9 Tanzadeh R, Arabani M. Advanced Materials Research, 2012, 587, 57.
10 Kuang D, Jiao Y, Ye Z, et al. Materials, 2018, 11(5), 833.
11 Cong P, Hao H, Zhang Y, et al. International Journal of Pavement Research and Technology, 2016, 9(4), 280.
12 Lin P, Chang C, Wu T. Advanced Materials Research, 2013, 723, 670.
13 Jia L, Sun L, Huang L, et al. Journal of Tongji University(Natural Science), 2007, 35(8), 1039 (in Chinese).
贾璐, 孙立军, 黄立葵, 等. 同济大学学报(自然科学版), 2007, 35(8), 1039.
14 Gao L, Liu Y, Xie J, et al. Materials, 2021, 14(2), 245.
15 Hendel M, Colombert M, Diab Y, et al. Applied Thermal Engineering, 2015, 78, 658.
16 Du Y, Ge Y. Journal of the Chinese Ceramic Society, 2022, 50(02), 466 (in Chinese).
杜渊博, 葛勇. 硅酸盐学报, 2022, 50(02), 466.
17 Kim K, Jeon S, Kim J, et al. Cement and Concrete Research, 2003, 33(3), 363.
18 Baghban M, Hovde P, Jacobsen S, et al. Materials and Structures, 2013, 46(9), 1537.
19 Du Y, Wang J, Chen J. Solar Energy, 2021, 217(3), 308.
20 Huang K, Xu T, Li G, et al. Construction and Building Materials, 2016, 115, 62.
21 Chu L, He L, Fwa, T. Construction and Building Materials, 2020, 243, 118250.
22 Li Y, Liu L, Sun L. Journal of Tongji University(Natural Science), 2020, 48(03), 377 (in Chinese).
李伊, 刘黎萍, 孙立军. 同济大学学报(自然科学版), 2020, 48(03), 377.
23 Chen J, Luo S, Li L, et al. Journal of Central South University(Natural Science), 2013, 44(04), 348 (in Chinese).
陈嘉祺, 罗苏平, 李亮, 等. 中南大学学报(自然科学版), 2013, 44(04), 348.
24 Ding X, Chen L, Ma T, et al. Construction and Building Materials, 2019, 203, 552.
25 JTG E20-2011公路工程沥青及沥青混合料试验规程, 人民交通出版社, 2011.
26 JTG/T 5521-2019公路沥青路面再生技术规范, 人民交通出版社, 2019.
27 Grunberg L, Nissan A. Nature, 1949, 164, 799.
28 Sun D, Zhu X, Sun G, et al. Fuel, 2018, 211, 609.
29 Xu M, Zhang Y. Construction and Building Materials, 2020, 261, 120673.
30 Farooq M, Mir M, Sharma A. Construction and Building Materials, 2018, 168, 61.
31 Han C, Ma T, Xu G, et al. International Journal of Pavement Engineering, 2022, 23(4), 985.
32 He L, Li G, Zheng Y, et al. Materials Reports, 2020, 34(19), 19083 (in Chinese).
何亮, 李冠男, 郑雨丰, 等. 材料导报, 2020, 34(19), 19083.
[1] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[2] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[3] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[4] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[5] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[6] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[7] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[8] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[9] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[10] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[11] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[12] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[13] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[14] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[15] 李辉, 郭润兰, 黄华, 黄晖阳. 基于扩展有限元方法的自愈微胶囊和基体力学性能适配的研究[J]. 材料导报, 2024, 38(13): 22100029-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed