Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20120255-8    https://doi.org/10.11896/cldb.20120255
  无机非金属及其复合材料 |
碳纤维石墨化技术综述
卫新宇1,2, 张文瑾1,2, 陈龙威1,*, 刘成周1, 林启富1, 江贻满1, 王晓洁1
1 中国科学院等离子体物理研究所,合肥 230031
2 中国科学技术大学科学岛分院,合肥 230026
Review of Graphitization Technology of Carbon Fibers
WEI Xinyu1,2, ZHANG Wenjin1,2, CHEN Longwei1,*, LIU Chengzhou1, LIN Qifu1, JIANG Yiman1, WANG Xiaojie1
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
2 Science Island Branch of Graduate School,University of Science and Technology of China, Hefei 230026, China
下载:  全 文 ( PDF ) ( 4068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高性能碳纤维具有极大的应用价值,碳纤维在石墨化后含碳量可达99%,且其拉伸模量和导电性能显著提升,热膨胀系数接近于0,适用于昼夜温差大的太空环境。因此,石墨化碳纤维被广泛应用于航天航空等尖端技术领域。石墨化设备和手段是制备高性能石墨纤维的关键,本文将石墨化设备按生产工艺和加热方式分为连续式和非连续式、间接加热式和直接加热式,分别介绍了电阻加热、感应加热、等离子体加热、微波加热、激光加热、γ射线加热和催化加热等石墨化技术,综述了上述石墨化方法和设备的优缺点,讨论并分析了碳纤维石墨化过程中微观结构的变化及其与碳纤维性能的关联性,指出如何更新和优化传统石墨化设备,来克服当前石墨化设备能耗高、成本高、效率低的缺点,为未来研发新兴的石墨化工艺、设备以及制备结构完备、性能优异的石墨纤维提供重要的参考和经验。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫新宇
张文瑾
陈龙威
刘成周
林启富
江贻满
王晓洁
关键词:  碳纤维  石墨化  结构与性能  等离子体    
Abstract: High-performance carbon fiber has great application prospects. The carbon content of carbon fiber can reach 99% after graphitization. The tensile modulus and conductivity can be improved greatly, and the coefficient of thermal expansion approaches to 0, which is suitable for the space environment involving a great diurnal temperature variation. Therefore, graphitized carbon fiber is extensively applied to cutting-edge technology fields such as space flight and aviation. Graphitization equipment and methods are the key aspect for preparing high-performance carbon fiber. In this paper, graphitization equipment is divided into continuous and discontinuous, indirect heating and direct heating, according to production process and heating method. Introductions were given to graphitization techniques including resistance heating, induction heating, plasma heating, microwave heating, laser heating, γ-ray heating and catalytic heating. In addition, the advantages and disadvantages of graphitization methods and equipments were summarized, meanwhile the microstructure change of carbon fiber in graphitization and its correlation with carbon fiber properties were analyzed. It will be the future development trend to optimize the traditional graphitization equipment and overcome the disadvantages of existing graphitization equipment such as high energy consumption, high cost and low efficiency. It provides important reference and experience for the future research and development of emerging graphitization process, equipment and the preparation of graphite fibers with complete structure and excellent performance.
Key words:  carbon fiber    graphitization    structure and performance    plasma
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TQ342+.74  
基金资助: 国家自然科学基金(11575252;11775270);合肥综合性国家科学中心能源研究院(19KZS206)
通讯作者:  *lwchen@ipp.ac.cn   
作者简介:  卫新宇,硕士研究生,2019年毕业于郑州大学材料科学与工程学院材料化学专业,获得理学学士学位。目前就读于合肥物质研究院等离子体物理研究所,主要研究方向为微波等离子技术及碳材料处理。
陈龙威,中国科学院合肥物质科学研究院等离子体物理研究所副研究员。2003年和2006年毕业于大连理工大学,分别获学士和硕士学位,2011年在中国科学技术大学/中科院等离子体物理研究所取得等离子体物理博士学位。长期从事低温等离子体应用和材料与等离子体相互作用的研究,在等离子体应用领域专业期刊以第一作者/通讯作者发表论文20余篇。
引用本文:    
卫新宇, 张文瑾, 陈龙威, 刘成周, 林启富, 江贻满, 王晓洁. 碳纤维石墨化技术综述[J]. 材料导报, 2022, 36(17): 20120255-8.
WEI Xinyu, ZHANG Wenjin, CHEN Longwei, LIU Chengzhou, LIN Qifu, JIANG Yiman, WANG Xiaojie. Review of Graphitization Technology of Carbon Fibers. Materials Reports, 2022, 36(17): 20120255-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120255  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20120255
1 Xu L H, Cao W Y, Hu L Q, et al. PAN-based carbon fiber, National Defense Industry Press, China, 2018, pp. 14 (in Chinese).
徐樑华, 曹维宇, 胡良全, 等. 聚丙烯腈基碳纤维, 北京国防工业出版社, 2018, pp. 14.
2 Tian Y H, Qiao W J, Zhang X J, et al. Materials Reports B:Research Papers, 2018, 32(5), 1668 (in Chinese).
田艳红, 乔伟静, 张学军, 等. 材料导报:研究篇, 2018, 32(5), 1668.
3 Tehrani M, Haugh T P, Hartman T B, et al. Composites Science and Technology, 2013, 75(2), 42.
4 Chand S. Journal of Materials Science, 2000, 35(6), 1303.
5 Kwei T K. Polymers for Advanced Technologies, 1992, 3(1), 47.
6 Guo Q F, Li W, Dong J H, et al. Advanced Engineering Materials, 2011, 194(196), 1558.
7 He F. Application and technology of carbon fiber, Chemical Industry Press, China, 2004 (in Chinese).
贺福.碳纤维及其应用技术, 化学工业出版社, 2004.
8 Khayyam H, Reza N J, Srinivas N, et al. Progress in Materials Science, 2020, 107(1), 100575.1.
9 Liu J, Wang P H, Li R Y, et al. Applied Polymer, 1994, 52(7), 945.
10 Rahaman M, Ismail A F, Mustafa A. Polymer Degradation and Stability, 2007, 92(8), 1421.
11 He F. Carbon fiber and graphite fiber, Chemical Industry Press, China, 2010 (in Chinese).
贺福. 碳纤维及石墨纤维, 化学工业出版社, 2010.
12 Sun D J, Yang J X, Zhou W H, et al. Materials Reports B:Research Papers, 2017, 31(12), 129 (in Chinese).
孙东健, 杨建校, 马国芝, 等. 材料导报:研究篇, 2017, 31(12), 129.
13 Maghe M, Creighton C, Henderson L C, et al. Journal of Materials Chemistry A, 2016, 4(42), 16619.
14 Yu Y Y, Tan J, Kai W Z, et al. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2019, 46(6), 21 (in Chinese).
于瑶瑶, 谭晶, 开吴珍,等. 北京化工大学学报(自然科学版), 2019, 46(6), 21.
15 Tan J, Sha Y, Li S Y, et al. Carbon Techniques, 2016, 35(6), 47 (in Chinese).
谭晶, 沙扬, 黎三洋,等.炭素技术, 2016, 35(6), 47.
16 White T L, Paulauskas F L, Bigelow T S. US patent, US9427720, 2016.
17 Kim S Y, Lee S, Jo S, et al. Polymer, 2015, 56, 590.
18 松田至康, 隐善厚生. 中国专利, CN106458595A, 2017.
19 陈新谋, 陈刚. 中国专利, CN1696365, 2005.
20 Li B, Feng Y, Qian G, et al. Journal of Nuclear Materials, 2013, 443(1-3), 26.
21 Tzeng S S, Lin Y H. Carbon, 2008, 46(3), 555.
22 Wen Y, Xiao H, Lu Y G, et al. Materials & Design, 2012, 36(4), 728.
23 Sha Y, Yang W M, Li S Y, et al. RSC Advances, 2018, 8(21), 11543.
24 Zhang Z H, Yang W M, Tan J, et al. Chemical Industry and Engineering Progress, 2019, 38(3), 1434 (in Chinese).
张政和, 杨卫民, 谭晶,等. 化工进展, 2019, 38(3), 1434.
25 Li D F, Yang H J, Zhu M X, et al. Chemical Industry and Engineering Progress, 2004, 23(2), 168 (in Chinese).
李东风, 王浩静, 朱星明,等. 化工进展, 2004, 23(2), 168.
26 王浩静, 刘颖, 周立公.中国专利, CN1399017, 2003.
27 王浩静, 刘颖, 周立公. 中国专利, CN1399016, 2003.
28 谭晶, 王浩静, 李东风, 等. 中国专利, CN1746344, 2006.
29 Xu X J, Chu D C. Physics of gas discharge, Fudan University Press, China, 2018 (in Chinese).
徐学基, 诸定昌. 气体放电物理, 复旦大学出版社, 1996.
30 Felix P L, Kenneth Y D, Thomas M T. US patent, US6372192, 2002.
31 陈新谋,陈刚. 中国专利, CN1690261, 2005.
32 Zhang P Z. New Carbon Materials, 2002, 17(3), 52 (in Chinese).
张蓬洲. 新型炭材料, 2002, 17(3), 52.
33 Zhao C. Experimental research on energy utilization efficiency and me-dium absorption characteristics in the process of microwave heat utilization. Master's Thesis, Shandong University, China, 2015 (in Chinese).
赵超. 微波热利用过程中能量利用效率及介质吸波特性的试验研究. 硕士学位论文, 山东大学, 2015.
34 Huang M, Peng J H, Wang J Q, et al. Journal of Kunming University of Science and Technology(Science and Technology), 2005, 30(6), 15 (in Chinese).
黄铭, 彭金辉, 王家强, 等. 昆明理工大学学报(理工版), 2005, 30(6), 15.
35 Pankaj K. Dielectric materials and applications, Nova Science Press, US, 2019.
36 Tong Z F, Bi S W, Yang Y H, et al. Journal of Materials and Metallurgy, 2004, 3(2), 117 (in Chinese).
佟志芳, 毕诗文, 杨毅宏. 材料与冶金学报, 2004, 3(2), 117.
37 Santos T, Valente M A, Monteiro J, et al. Applied Thermal Engineering, 2011, 31(16), 3255.
38 张蓬洲. 中国专利, CN1385567, 2002.
39 Wu Z J, Meng L H, Liu L. Journal of Reinforced Plastics and Composites, 2014, 33(3), 242.
40 Xu Z W, Liu L S, Huang Y D, et al. Materials Letters, 2009, 63(21), 1814.
41 Li D F, Wang H J, Wang X K. Spectroscopy and Spectral Analysis, 2007, 27(11), 2249 (in Chinese).
李东风, 王浩静, 王心葵.光谱学与光谱分析, 2007, 27(11), 2249.
42 Huang Z H, Zhou H H, Peng Q L, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(8), 1418.
43 Lu Y G. High performance carbon fiber, Chemical Industry Press, China, 2018 (in Chinese).
吕永根.高性能炭纤维, 化学工业出版社, 2018.
44 Tian Y H, Chang W P, Sheng Z M, et al. New Carbon Materials, 1999, 14(1), 3 (in Chinese).
田艳红, 常维璞, 沈曾民, 等. 新型炭材料, 1999, 14(1), 3.
45 Sheng Z M, Tian Y H, Chang W P, et al. Acta Materiae Compositae Sinica, 2004, 21(1), 7 (in Chinese).
沈曾民, 田艳红, 常维璞, 等. 复合材料学报, 2004, 21(1), 7.
46 Hishiyama Y, Inagaki M. Carbon, 2001, 39(1), 150.
47 Northolt M G, Veldhuizen L H, Jansen H. Carbon, 1991, 29(8), 1267.
48 Liu F, Zhu Z P, Fan L D, et al. Journal of Materials Science, 2008, 43(12), 4316.
49 Tyson C N. Journal of Physics D-Applied Physics, 1975, 8(7), 749.
50 Newcomb B A. Composites Part A: Applied Science and Manufacturing, 2016, 91(1), 262.
51 Xiao H, Lu Y G, Zhao W Z, et al. Journal of Materials Science, 2014, 49(14), 5017.
52 Fischer L, Ruland W. Colloid and Polymer Science, 1980, 258(8), 917.
53 Li D H, Lu C X, Wang L, et al. Materials Science & Engineering: A, 2017, 685, 65.
54 Zhang W X, Liu J, Gang W. Carbon, 2003, 41(14), 2805.
55 Li D H, Lu C X, Wu G P, et al. Journal of Materials Science & Techno-logy, 2014, 30(10), 1051.
56 Franklin R E. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1951, 209(1097), 196.
57 Kobayashi T, Sumiya K, Fujii Y, et al. Carbon, 2012, 50(3), 1163.
58 Sauder C, Lamon J, Pailler R. Carbon, 2004, 42(4), 715.
59 Xiao H, Lu Y G, Zhao W Z, et al. Journal of Materials Science, 2014, 49(2), 794.
60 Ye C, Wu H, Huang D, et al. Carbon Letters, 2019, 29(5), 497.
61 Qian X, Zhi J H, Chen L Q, et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 111.
62 Gupta A, Dhakate S R, Pal P, et al. Diamond and Related Materials, 2017, 78, 31.
63 Zhang Z H, Yang W M, Cheng L S, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(48), 17629.
64 Wang H J, Li D F, Wang X K. New Carbon Materials, 2006, 21(2), 114.
65 Yu Y, Wu H, Huang D, et al. Carbon Techniques, 2020, 39(5), 35 (in Chinese).
余洋, 吴晃, 黄东, 等. 炭素技术, 2020, 39(5), 35.
66 Qin X, Lu Y G, Xiao H, et al. Carbon, 2012, 50(12), 4459.
67 Gong M Q, Zhang C T, Wang R H. Journal of Chongqing University of Technology (Natural Science), 2021, 35(3), 106 (in Chinese).
龚美琦, 张春涛, 王汝恒. 重庆理工大学学报(自然科学), 2021, 35(3), 106.
[1] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[2] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[3] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[4] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[5] 刘员环, 曾美琴, 鲁忠臣, 朱敏. 等离子球磨技术在材料制备中的应用[J]. 材料导报, 2022, 36(15): 20120251-9.
[6] 孟云蛟, 张有宏, 常新龙, 胡宽, 齐重阳, 王震, 朱雪蒙. 含双孔国产T800碳纤维复合材料层合板失效模式研究[J]. 材料导报, 2022, 36(14): 21030285-7.
[7] 吕闹, 汪海波, 宗琦. 碳纤维布加固高强砂浆动态压缩试验研究[J]. 材料导报, 2022, 36(10): 20100144-6.
[8] 宋庆功, 常斌斌, 董珊珊, 顾威风, 康建海, 王明超, 刘志锋. 机器学习及其在材料研发中的作用[J]. 材料导报, 2022, 36(1): 20080139-7.
[9] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[10] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 胡炜杰, 钟明建, 杨营, 盘茂森, 任清刚. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(z2): 627-633.
[13] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[14] 江文正, 章卫钢, 子绚, 刘贤淼, 张文标, 李文珠. 二次炭化温度对竹炭导电性能及结构的影响[J]. 材料导报, 2021, 35(8): 8023-8027.
[15] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed