Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20100144-6    https://doi.org/10.11896/cldb.20100144
  无机非金属及其复合材料 |
碳纤维布加固高强砂浆动态压缩试验研究
吕闹, 汪海波*, 宗琦
安徽理工大学土木建筑学院,安徽 淮南 232001
Experimental Study on Dynamic Compression of High-strength Mortar Reinforced by CFRP
LYU Nao, WANG Haibo*, ZONG Qi
School of Civil Engineering and Architecture, Anhui University of Science & Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 4755KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究碳纤维布(CFRP)加固后砂浆的动态强度和破碎特征,利用直径50 mm分离式Hopkinson试验装置开展不同冲击气压下普通砂浆和CFRP加固砂浆的动态压缩试验。基于孕育时间准则,分析了砂浆试件的应力率灵敏性以及瞬时峰值强度的增大趋势。结果表明:在试验的应力率范围内,普通砂浆和CFRP加固砂浆的峰值应力均随着应力率的增加而增加,而临界时间呈缩短趋势,CFRP加固砂浆的临界时间相比于普通砂浆要滞后9~61.7μs,且应力率越大,临界时间滞后的幅度越小;普通砂浆和CFRP加固砂浆的孕育时间分别为54.2 μs和72.1 μs,不同的孕育时间表明它们的应力的动态增长效应不同,CFRP加固砂浆的应力的动态增长效应大于普通砂浆;CFRP加固砂浆试件出现分层断裂现象,随着应力率的增大,CFRP加固砂浆的破碎特征逐步接近普通砂浆。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕闹
汪海波
宗琦
关键词:  碳纤维布  动态压缩  应力率  破碎特征  孕育时间    
Abstract: To study the dynamic strength and fracture characteristics of CFRP reinforced mortars, dynamic compression tests of normal mortars and CFRP reinforced mortars under different velocities were performed with the 50 mm split Hopkinson bar system. The incubation time criterion acted as a standard to analyze stress rate sensitivity and the increase trend of the instantaneous critical strength of mortar specimens. The results show that, within the range of the tested stress rate, the tested dynamic strengths of normal mortars and CFRP reinforced mortars increases with stress rate, while their critical time decreases with it. The critical time of CFRP reinforced mortar lags 9—61.7 μs, compared with that of normal mortar, and the greater the stress rate is, the smaller the extent of the critical time lag is. The incubation time of normal mortars and CFRP reinforced mortars are 54.2 μs and 72.1 μs respectively, indicating that their dynamic enhancement effects of stress are different, and the dynamic enhancement effect of CFRP reinforced mortars is more significant than that of normal mortars. The layered fracture of CFRP reinforced mortar spe-cimens appears, and with the increase of stress rate, the fracture characteristics of CFRP reinforced mortar specimens are gradually close to that of ordinary mortar.
Key words:  carbon fiber reinforced plastics (CFRP)    dynamic compression    stress rate    fracture characteristics    incubation time
发布日期:  2022-05-24
ZTFLH:  TU528  
基金资助: 安徽省自然科学基金(2008085ME163)
通讯作者:  wanghb_aust@163.com   
作者简介:  吕闹,2019年至今于安徽理工大学土木建筑学院攻读博士学位,主要从事爆破工程及冲击动力学方面的研究。
汪海波,2012年毕业于安徽理工大学能源与安全学院,获博士学位,现任安徽理工大学教授,硕士研究生导师。主要从事地下工程、爆破工程与冲击动力学等方面的科研和教学工作。获省部级科技成果奖8项,授权发明专利和实用新型专利10项,参编教材1部,发表论文30余篇。
引用本文:    
吕闹, 汪海波, 宗琦. 碳纤维布加固高强砂浆动态压缩试验研究[J]. 材料导报, 2022, 36(10): 20100144-6.
LYU Nao, WANG Haibo, ZONG Qi. Experimental Study on Dynamic Compression of High-strength Mortar Reinforced by CFRP. Materials Reports, 2022, 36(10): 20100144-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100144  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20100144
1 Karbhari V M, Seilble F. Applied Composite Materials, 2000, 7(2), 95.
2 Wang X, Zhang J W, Lyu Z T, et al. China Civil Engineering Journal, 2008, 41(8), 36 (in Chinese).
汪昕, 张继文, 吕志涛, 等. 土木工程学报, 2008, 41(8), 36.
3 Yao W L, Jiang S Y, Cai T, et al. Materials Reports A:Review Papers, 2019, 33(9), 2890 (in Chinese).
姚未来, 江世永, 蔡涛, 等. 材料导报:综述篇, 2019, 33(9), 2890.
4 Barros J A O, Dias S J E. Cement and Concrete Composites, 2006, 28(3), 276.
5 Han Y, Wang L L, Liu Z H. Materials Reports, 2019, 33(Z2), 304 (in Chinese).
韩艳, 王龙龙, 刘志浩. 材料导报, 2019, 33(Z2), 304.
6 Lu Y Y. Materials Reports, 2018, 39(10), 138 (in Chinese).
卢亦焱. 建筑结构学报, 2018, 39(10), 138.
7 Zhu J T, Wang X L. Earthquake Resistant Engineering and Retrofitting, 2015, 37(1), 100 (in Chinese).
朱俊涛, 王新玲. 工程抗震与加固改造, 2015, 37(1), 100.
8 Yu T X, Qiu X M. Impact dynamics, Tsinghua University Press, China, 2011 (in Chinese).
余同希, 邱信明. 冲击动力学, 清华大学出版社, 2011.
9 Zhang B C, Pan J L. Explosion and Shock Waves, 2003, 23(5), 466 (in Chinese).
张宝超, 潘景龙. 爆炸与冲击, 2003, 23(5), 466.
10 Ding X, Zhou D, Liu D, et al. Journal of Vibration and Shock, 2018, 37(6), 124 (in Chinese).
丁驯, 周叮, 刘朵, 等. 振动与冲击, 2018, 37(6), 124.
11 Shan B, Liu B, Xiao Y, et al. Journal of Vibration and Shock, 2016, 35(20), 90 (in Chinese).
单波, 刘波, 肖岩, 等. 振动与冲击, 2016, 35(20), 90.
12 Liu C X, Li Y L, Wu Z Y, et al. Journal of Vibration and Shock, 2011, 30(5), 1 (in Chinese).
刘传雄, 李玉龙, 吴子燕, 等. 振动与冲击, 2011, 30(5), 1.
13 Chen W X, Yan S H. China Civil Engineering Journal, 2010, 43(5), 1 (in Chinese).
陈万祥, 严少华. 土木工程学报, 2010, 43(5), 1.
14 Pan J L, Luo M, Zhou J J. Journal of Tianjin University, 2010, 43(9), 755 (in Chinese).
潘金龙, 罗敏, 周甲佳. 天津大学学报, 2010, 43(9), 755.
15 Li S L, Liu D S, Yang J, et al. Journal of Highway and Transportation Research and Development, 2010, 27(4), 22 (in Chinese).
李胜林, 刘殿书, 杨俊, 等. 公路交通科技, 2010, 27(4), 22.
16 Zhang Q B, Zhao J. Rock Mechanics and Rock Engineering, 2014, 47(4), 1411.
17 Kalthoff J F, Shockey D A. Journal of Applied Physics, 1977, 48(3), 986.
18 Shockey D A, Kalthoff J F, Erlich D C. International Journal of Fracture, 1983, 22(3), 217.
19 Homma H, Shockey D A, Murayama Y. Journal of the Mechanics and Physics of Solids, 1983, 31(3), 261.
20 Petrov Y V, Morozov N F. Journal of Applied Mechanics, 1994, 61(3), 710.
21 Bragov A M, Petrov Y V, Karihaloo B L, et al. Engineering Fracture Mechanics, 2013, 110, 477.
22 Lu F Y, Chen R, Lin Y L, et al. Hopkinson bar techniques, Science Press, China, 2013 (in Chinese).
卢芳云, 陈荣, 林玉亮, 等. 霍普金森压杆试验技术, 科学出版社, 2013.
23 Petrov Y V, Utkin A A. Materials Science, 1989, 25(2), 153.
24 Petrov Y V, Smirnov I V, Volkov G A, et al. Joumal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 125.
25 Li X F, Li X, Li H B, et al. International Journal of Impact Engineering, 2018, 118, 98.
26 Zhang M, Wu H J, Li Q M, et al. International Journal of Impact Engineering, 2009, 36(12), 1327.
27 Li Q M, Lu Y B, Meng H. International Journal of Impact Engineering, 2009, 36(12), 1335.
[1] 张俊喜, 易湘斌, 沈建成, 陈百明, 李保栋, 徐创文. 固溶和工作温度对TC21钛合金动态压缩性能和绝热剪切敏感性的影响[J]. 材料导报, 2020, 34(24): 24092-24096.
[2] 唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed