Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21120159-8    https://doi.org/10.11896/cldb.21120159
  金属与金属基复合材料 |
拉伸荷载作用下桥梁拉索钢丝/钢筋的力-磁效应研究
何峻峰1, 江胜华1,2,*, 孙伟贺1, 王廉强1
1 西南大学工程技术学院,重庆 400715
2 武汉大学土木建筑工程学院,武汉 430072
Stress-magnetic Effect of Bridge Cable Wire and Steel Under Tensile Load
HE Junfeng1, JIANG Shenghua1,2,*, SUN Weihe1, WANG Lianqiang1
1 College of Engineering and Technology, Southwest University, Chongqing 400715, China
2 School of Civil Engineering, Wuhan University, Wuhan 430072, China
下载:  全 文 ( PDF ) ( 9427KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拉伸荷载作用下拉索钢丝/钢筋在弹塑性全过程的力-磁效应及力-磁反转现象的研究尚不充分,且现有试验中存在环境干扰磁场,严重影响磁场试验的准确性。研制了拉伸荷载作用下拉索钢丝/钢筋应力的磁场测试的无磁试验系统,采用试验和有限元研究了钢筋受拉弹塑性全过程钢筋自身的磁感应强度及磁场梯度与应力的关系。试验结果表明,在应力为0~175.9 MPa时,磁畴的变化以磁畴壁移为主,随着应力增大,钢筋磁导率增大,钢筋自身的磁感应强度By和磁场梯度Byz的绝对值增大;在应力大于175.9 MPa至接近断裂时,磁畴的变化以磁畴旋转为主,随应力(应变)增大,钢筋磁导率降低,钢筋自身的磁感应强度By和磁场梯度Byz的绝对值减小。钢筋自身的磁感应强度By及磁场梯度Byz绝对值的平均值与应力的曲线均在175.9 MPa发生反转,反转点对应的应力小于屈服强度(584.3 MPa)。有限元计算的钢筋自身的磁感应强度By和磁场梯度Byz随应力的变化规律与试验基本一致。对于钢筋受拉弹塑性全过程的磁感应强度及磁场梯度绝对值的平均值与应力的关系,试验值和有限元计算值及拟合值三者非常接近,可为拉索钢丝/钢筋应力的磁场监测提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何峻峰
江胜华
孙伟贺
王廉强
关键词:  拉索钢丝  钢筋  力-磁效应  磁感应强度  磁场梯度    
Abstract: The current research on the stress-magnetic effect and reversal effect on cable wire and steel during the entire elastoplastic process under tensile load is limited. Moreover, the existing test method is influenced by environmental interference magnetic fields, which significantly affect the accuracy of the magnetic field-based test. The nonmagnetic experimental method is developed for the magnetic testing of stress in cable wire and steel under tensile load. Experiment and finite element analysis (FEA) are used to investigate the relationship between the steel's magnetic field intensity, magnetic gradient, and stress during the entire elastoplastic tension process. When the stress was smaller than 175.9 MPa, the change in the magnetic domain was dominated by wall shifts. As the stress increased, the magnetic permeability of the steel bar increased, and the absolute values of the magnetic field intensity By and magnetic gradient Byz increased for most measuring points. When the stress was greater than 175.9 MPa (before fracture), the change in the magnetic domain was dominated by rotation. As the stress or strain increased, the magnetic permeability of the steel bar decreased, and the absolute values of By and Byz decreased for most measuring points. The relationship between the mean of the absolute values of By and Byz and stress is reversed when stress is 175.9 MPa, which is smaller than the yield strength (584.3 MPa). The By and Byz values of steel calculated by FEA are relatively consistent with the experimental results. During the entire elastoplastic procedure under tensile load, experimental values, calculated values by FEA, and fitted values were very similar in terms of the relationship between the mean of the absolute values of By and Byz of steel and stress, which may be used as a reference for magnetic monitoring of stress in cable wire and steel stress.
Key words:  cable wire    steel    stress-magnetic effect    magnetic field intensity    magnetic gradient
发布日期:  2023-07-10
ZTFLH:  TH140.7  
  TG115.28  
基金资助: 国家自然科学基金(51208078);重庆市技术创新与应用示范社会民生类项目(cstc2018jscx-msybX0028);中国博士后科学基金(2017M622977);重庆市博士后科研项目特别资助(XmT2018028)
通讯作者:  *江胜华,西南大学工程技术学院副教授、硕士研究生导师。2004年6月、2006年6月和2010年6月于武汉大学获得工学学士、工学硕士和工学博士学位。目前主要从事基于磁场的结构健康监测等方面的研究工作。发表EI/SCI期刊论文20余篇,获得授权发明专利20余项。jiangsh@whu.edu.cn   
作者简介:  何峻峰,2020年6月于成都理工大学获得工学学士学位,现为西南大学工程技术学院硕士研究生,在江胜华副教授的指导下进行研究,主要研究领域为基于磁场的结构健康监测。
引用本文:    
何峻峰, 江胜华, 孙伟贺, 王廉强. 拉伸荷载作用下桥梁拉索钢丝/钢筋的力-磁效应研究[J]. 材料导报, 2023, 37(13): 21120159-8.
HE Junfeng, JIANG Shenghua, SUN Weihe, WANG Lianqiang. Stress-magnetic Effect of Bridge Cable Wire and Steel Under Tensile Load. Materials Reports, 2023, 37(13): 21120159-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120159  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21120159
1 Zhao Y Y, He Q, Zhang Z Y, et al. Journal of Yangtze River Scientific Research Institute, 2020, 37(4), 146 (in Chinese).
赵亚宇, 何沁, 张泽宇, 等. 长江科学院院报, 2020, 37(4), 146.
2 Dubov A A. Metal Science & Heat Treatment, 1997, 39(9), 401.
3 Wang W, Yi S C, Su S Q, et al. China Journal of Highway and Transport, 2019, 32(9), 1 (in Chinese).
王威, 易术春, 苏三庆, 等. 中国公路学报, 2019, 32(9), 1.
4 Jin W L, Xiang K X, Mao J H, et al. The Ocean Engineering, 2017, 35(6), 62 (in Chinese).
金伟良, 项凯潇, 毛江鸿, 等. 海洋工程, 2017, 35(6), 62.
5 Leng J C, Tian H X, Guo Y G, et al. Chinese Journal of Engineering, 2018, 40(5), 565 (in Chinese).
冷建成, 田洪旭, 郭亚光, 等. 工程科学学报, 2018, 40(5), 565.
6 Pang C Y, Zhou J T, Zhao R Q, et al. Materials, 2019, 12(7), 1167.
7 Liu B, Fu P, Li R F, et al. Materials, 2019, 12(24), 4028.
8 Su S Q, Ma X P, Wang W, et al. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2017, 49(3), 309 (in Chinese).
苏三庆, 马小平, 王威, 等. 西安建筑科技大学学报(自然科学版), 2017, 49(3), 309.
9 Yi S C, Wang W, Su S Q, et al. Journal of Vibration, Measurement & Diagnosis, 2017, 37(4), 667 (in Chinese).
易术春, 王威, 苏三庆, 等. 振动、测试与诊断, 2017, 37(4), 667.
10 Fu M L, Bao S, Bai S Z, et al. Journal of Harbin Institute of Technology, 2017, 49(6), 178 (in Chinese).
付美礼, 包胜, 柏树壮, 等. 哈尔滨工业大学学报, 2017, 49(6), 178.
11 Zhao B X, Yao K, Wu L B, et al. Applied Sciences-Basel, 2020, 10(20), 7083.
12 Yong Q W, He E A, Zuo W G, et al. Vibroengineering Procedia, 2021, 38, 101.
13 Wang G Q, Yan P, Wei L W, et al. Advances in Materials Science and Engineering, 2017, 2017, 1284560.
14 Shi P P, Hao S. Acta Physica Sinica, 2021, 70(3), 105 (in Chinese).
时朋朋, 郝帅. 物理学报, 2021, 70(3), 105.
15 Jiang S H, Hou J G, He Y M. Journal of Southwest Jiaotong University, 2021, 56(6), 1176 (in Chinese).
江胜华, 侯建国, 何英明. 西南交通大学学报, 2021, 56(6), 1176.
16 Amiri M S, Thielen M, Rabung M, et al. Journal of Magnetism and Magnetic Materials, 2014, 372, 16.
17 Yang W Z, Liu X C, Gong Y, et al. China Measurement & Test, 2020, 46(4), 136 (in Chinese).
杨文哲, 刘秀成, 龚裕, 等. 中国测试, 2020, 46(4), 136.
18 Zhou H M, Zhou Y H, Zheng X J. Journal of Applied Physics, 2008, 104, 023907.
19 Shi P P. Quantitative study of micro-magnetic nondestructive testing for stress and defect in ferromagnetic materials. Ph. D. Thesis, Xidian University, China, 2017 (in Chinese).
时朋朋. 铁磁材料应力和缺陷的微磁检测定量化研究. 博士学位论文, 西安电子科技大学, 2017.
20 Jiang L L, Tan J W. Coal Mine Machinery, 2014, 35 (4), 41 (in Chinese).
姜亮良, 谭继文. 煤矿机械, 2014, 35(4), 41.
21 Song Q, Ding W X, Peng H, et al. Wireless Personal Communications, 2017, 95(3), 2299.
22 Li Y, Ren S K. Journal of Iron and Steel Research, 2013, 25(3), 30 (in Chinese).
李一, 任尚坤. 钢铁研究学报, 2013, 25(3), 30.
23 Yan Z R, Zeng B, Xie W, et al. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7), 1121 (in Chinese).
闫卓然, 曾斌, 谢伟, 等. 机械科学与技术, 2020, 39(7), 1121.
[1] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[2] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[3] 杨杨, 凌宏杰, 刘金涛, 卢旭峰. 不同缺陷对装配式建筑钢筋灌浆套筒连接性能的影响[J]. 材料导报, 2023, 37(2): 21070022-7.
[4] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[7] 张冲, 毕梦迪, 刘同军, 宁靖华, 段广彬, 张秀芝, 慕儒. 砂浆流变性能和外界磁场强度对钢纤维分布特征的影响[J]. 材料导报, 2022, 36(24): 21110154-6.
[8] 郑玉龙, 刘翔, 陆春华, 步森壮, 幸左贤二. 箍筋弯折时的初期损伤及其对力学性能的影响[J]. 材料导报, 2022, 36(23): 21110130-6.
[9] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[10] 商怀帅, 邵姝文, 冯海暴, 李永升. NPR钢筋力学性能试验研究[J]. 材料导报, 2022, 36(10): 21010164-7.
[11] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[12] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[13] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[14] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[15] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed