Effects of Different Rolling Temperatures on Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy
ZHOU Zhenzhen1, WANG Zuojin2,3, JIAO Shishun3, CAO Rui3,*
1 Harbin Welding Institute Limited Company,Harbin 150028, China 2 Processing Room of Technology Departmen, Lanzhou Petroleum Equipment Engineering Co., Ltd., Lanzhou 730300, China 3 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: AlCoCrFeNi2.1 eutectic high entropy alloy is composed of lamellar structure with alternating body-centered cubic phase and face-centered cubic phase. This unique microstructure makes it have good mechanical properties, which attracts attention. At the same time, the hard and brittle body-centered cubic phase with coarse lamellar shape limits the further improvement of the mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy. In this work, hot rolling and annealing methods were used to further improve the mechanical properties of the as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. In this experiment, the hot rolling temperatures were selected as 800 ℃, 1 000 ℃ and 1 200 ℃ respectively, and the effects of different temperatures on the properties of AlCoCrFeNi2.1 eutectic high entropy alloy were revealed by mechanical properties, X-ray diffraction, microstructure analysis and other related tests. The results show that after rolling, the tensile strength and elongation are both improved. The tensile strength and elongation of the specimen with the rolling temperature of 800 ℃ reached 1 475 MPa and 20.4%, which was the best and can surpass 46.8% and 32.5% than that of the as-cast alloy respectively. While the improvement for the specimen with rolling temperature of 1 000 ℃ was the weakest. The change of hardness for the specimens with three rolling temperatures was consistent with that of tensile strength. The hardness of the specimen with the rolling temperature of 800 ℃ reached the maximum value of 427HV, which was 37.7% higher than that of the as-cast specimen. For the specimens with the rolling temperature of 800 ℃ and 1 000 ℃, white granular precipitates were precipitated in the body-centered cubic matrix in the normal surface of vertical rolling, and the particle size obviously increased at 1 000 ℃. In the transverse direction of vertical rolling, for the specimens with the rolling temperature of 1 000 ℃ and 1 200 ℃, rod-shaped and spherical precipitates were found on the face-centered cubic matrix, in which the spherical precipitates had the same composition and microstructure as the body-centered cubic matrix.
通讯作者: *曹睿,兰州理工大学,博士、教授、博士研究生导师。获得甘肃省飞天学者和四川省天府学者特聘教授。2000年于武汉理工大学获学士学位,2003年于兰州理工大学获硕士学位,2006年于兰州理工大学获博士学位,2014年1月至2015年1月,在美国橡树岭国家实验室材料科学与技术系做访问学者,2016年9月至2017年7月,在清华大学机械系做访问学者。2003年6月于兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文90余篇,发表中文核心期刊论文100余篇。完成著作2部Micromechanism of Cleavage Fracture of Metals、《金属解理断裂微观机理》。完成国家自然科学基金项目、甘肃省科研项目以及企业合作项目40余项。caorui@lut.edu.cn
周珍珍, 汪佐瑾, 焦世舜, 曹睿. 不同轧制温度对AlCoCrFeNi2.1共晶高熵合金组织与力学性能的影响[J]. 材料导报, 2023, 37(16): 21120021-6.
ZHOU Zhenzhen, WANG Zuojin, JIAO Shishun, CAO Rui. Effects of Different Rolling Temperatures on Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy. Materials Reports, 2023, 37(16): 21120021-6.
1 Yeh J W, Chen S K, et al. Advanced Engineering Materials, 2004,6(5),299. 2 Michael, Gao M C. Jom, 2013, 65(12),1749. 3 Santodonato L J, Zhang Y, Feygenson M, et al. Nature Communications, 2015, 6,5964. 4 Yang X, Zhang Y. Materials Chemistry and Physics, 2012, 132( 2–3),233. 5 Guo N N, Gao X J, Li X Y, et al. Chinese Journal of Rare Metals, 2021, 45(6), 728(in Chinese). 郭娜娜, 高绪杰, 李肖逸, 等. 稀有金属, 2021, 45(6), 728. 6 George E P, Raabe D, Ritchie R O. Nature reviews Materials, 2019, 4, 515. 7 Li J G, Huang R R, Zhang Q, et al. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2),333 (in Chinese). 李建国, 黄瑞瑞, 张倩, 等. 力学学报, 2020, 52(2),333. 8 Zou Y, Ma H, Spolenak R. Nature Communications, 2015, 6,7748. 9 Otto F, Dlouhy A, Somsen C, et al. Acta Materialia, 2013, 61( 15),5743. 10 George E P, Curtin W A, Tasan C C. Acta Materialia, 2020, 188, 435. 11 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887. 12 Zheng B, Liu Q B, Zhang L Y. Advanced Materials Research, 2013, 820,63. 13 Lin L R. The structure and properties of quinary high entropy alloys with high melting temperature. Master's Thesis, Harbin Institute of Technology, 2007 (in Chinese). 林丽蓉. 高熔化温度五元高熵合金组织及性能研究. 硕士学位论文, 哈尔滨工业大学, 2007. 14 Ye Q, Yang G, Yang B. Journal of Alloys and Compounds, 2021, 869(5),159336. 15 Lu Y, Dong Y, Guo S, et al. Rep, 2014, 4,6200. 16 Wang L, Wu X, Yao C, et al. Metallurgical and Materials Transactions, 2020, 51(11),5781. 17 Zhang Y, Li J, Wang X, et al. Journal of Materials Science & Technology, 2019, 35(5),5. 18 Tan Y Q, Wang X M, Zhu S, et al. Materials Reports, 2020,34(3),05120 (in Chinese). 谭雅琴, 王晓明, 朱胜,等. 材料导报, 2020,34(3),05120. 19 Sathiaraj G D, Bhattacharjee P P. Materials Characterization, 2015, 109,189. 20 Seelam R R, Yoshida S, Bhattacharjee P P, et al. Scientific Reports, 2019, 9(1),11505. 21 Yang J. Effect of grain refinement and precipitation strengthening on mechanical properties of Al0.1CoCrFeNi high entropy alloy. Master's Thesis, Taiyuan University of Technology, China, 2019 (in Chinese). 杨静. 细化晶粒及析出强化对Al0.1CoCrFeNi高熵合金力学性能的影响. 硕士学位论文, 太原理工大学, 2019. 22 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016,4, 174. 23 Wu M, Yang C, Kuijer M, et al. Materials Characterization, 2019, 158,109983. 24 Wani I S, Bhattacharjee T, Sheikh S, et al. MaterialsScience & Engineering A,2016,675, 99.