Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21120021-6    https://doi.org/10.11896/cldb.21120021
  金属与金属基复合材料 |
不同轧制温度对AlCoCrFeNi2.1共晶高熵合金组织与力学性能的影响
周珍珍1, 汪佐瑾2,3, 焦世舜3, 曹睿3,*
1 中国机械总院集团哈尔滨焊接研究所有限公司,哈尔滨 150028
2 兰州兰石石油装备工程股份有限公司,工艺部加工室,兰州 730300
3 兰州理工大学,材料科学与工程学院,有色金属先进加工与再利用国家重点实验室,兰州 730050
Effects of Different Rolling Temperatures on Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy
ZHOU Zhenzhen1, WANG Zuojin2,3, JIAO Shishun3, CAO Rui3,*
1 Harbin Welding Institute Limited Company,Harbin 150028, China
2 Processing Room of Technology Departmen, Lanzhou Petroleum Equipment Engineering Co., Ltd., Lanzhou 730300, China
3 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 8037KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AlCoCrFeNi2.1共晶高熵合金是由体心立方相和面心立方相交替排布的层片状组织构成。这种独特的组织形式使其具有良好的力学性能,从而受到广泛关注。以粗大层片状存在的硬脆体心立方相限制了AlCoCrFeNi2.1共晶高熵合金力学性能的进一步提升。本工作基于此提出使用热轧及退火处理的方法对铸态AlCoCrFeNi2.1高熵合金进行轧制改性处理,从而进一步提升AlCoCrFeNi2.1共晶高熵合金的力学性能。本试验热轧温度分别选取800 ℃、1 000 ℃和1 200 ℃,通过力学性能测试、X射线衍射相分析、组织分析等相关试验,探究不同温度对AlCoCrFeNi2.1共晶高熵合金性能的影响。结果表明:经轧制后材料的抗拉强度和延伸率均得到提高,轧制温度为800 ℃时材料的抗拉强度为1 475 MPa、延伸率为20.4%,性能提升最佳,较铸态合金分别提升46.8%和32.5%;轧制温度为1 000 ℃时性能提升最弱;三种温度下硬度变化规律与强度变化规律一致,经800 ℃轧制后材料硬度值达到最大值,维氏硬度值为427HV,较铸态提高了37.7%。轧制温度为800 ℃和1 000 ℃时,在垂直轧制法向面上,体心立方基体中析出白色颗粒状析出相,并且在1 000 ℃时颗粒尺寸明显增大;而在垂直轧制横向面上,当轧制温度为1 000 ℃和1 200 ℃时,面心立方基体上发现棒状和球状的析出相,其中球状析出相与基体体心立方相有着相同的成分和结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周珍珍
汪佐瑾
焦世舜
曹睿
关键词:  高熵合金  热轧  温度  组织  性能    
Abstract: AlCoCrFeNi2.1 eutectic high entropy alloy is composed of lamellar structure with alternating body-centered cubic phase and face-centered cubic phase. This unique microstructure makes it have good mechanical properties, which attracts attention. At the same time, the hard and brittle body-centered cubic phase with coarse lamellar shape limits the further improvement of the mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy. In this work, hot rolling and annealing methods were used to further improve the mechanical properties of the as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. In this experiment, the hot rolling temperatures were selected as 800 ℃, 1 000 ℃ and 1 200 ℃ respectively, and the effects of different temperatures on the properties of AlCoCrFeNi2.1 eutectic high entropy alloy were revealed by mechanical properties, X-ray diffraction, microstructure analysis and other related tests. The results show that after rolling, the tensile strength and elongation are both improved. The tensile strength and elongation of the specimen with the rolling temperature of 800 ℃ reached 1 475 MPa and 20.4%, which was the best and can surpass 46.8% and 32.5% than that of the as-cast alloy respectively. While the improvement for the specimen with rolling temperature of 1 000 ℃ was the weakest. The change of hardness for the specimens with three rolling temperatures was consistent with that of tensile strength. The hardness of the specimen with the rolling temperature of 800 ℃ reached the maximum value of 427HV, which was 37.7% higher than that of the as-cast specimen. For the specimens with the rolling temperature of 800 ℃ and 1 000 ℃, white granular precipitates were precipitated in the body-centered cubic matrix in the normal surface of vertical rolling, and the particle size obviously increased at 1 000 ℃. In the transverse direction of vertical rolling, for the specimens with the rolling temperature of 1 000 ℃ and 1 200 ℃, rod-shaped and spherical precipitates were found on the face-centered cubic matrix, in which the spherical precipitates had the same composition and microstructure as the body-centered cubic matrix.
Key words:  high entropy alloy    hot rolling    temperature    microstructure    performance
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TG139  
基金资助: 国家自然科学基金(52175325;51761027)
通讯作者:  *曹睿,兰州理工大学,博士、教授、博士研究生导师。获得甘肃省飞天学者和四川省天府学者特聘教授。2000年于武汉理工大学获学士学位,2003年于兰州理工大学获硕士学位,2006年于兰州理工大学获博士学位,2014年1月至2015年1月,在美国橡树岭国家实验室材料科学与技术系做访问学者,2016年9月至2017年7月,在清华大学机械系做访问学者。2003年6月于兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文90余篇,发表中文核心期刊论文100余篇。完成著作2部Micromechanism of Cleavage Fracture of Metals、《金属解理断裂微观机理》。完成国家自然科学基金项目、甘肃省科研项目以及企业合作项目40余项。caorui@lut.edu.cn   
作者简介:  周珍珍 哈尔滨工程大学材料学硕士,高级工程师。2006年于长安大学获学士学位,2009年于哈尔滨工程大学获硕士学位。主要从事期刊编辑出版工作,任《焊接学报》期刊副主编,China Welding期刊执行主编。发表论文13篇,完成国家级项目3项。获中国科协优秀论文编辑奖3项,所在期刊收录及获奖10余项。
引用本文:    
周珍珍, 汪佐瑾, 焦世舜, 曹睿. 不同轧制温度对AlCoCrFeNi2.1共晶高熵合金组织与力学性能的影响[J]. 材料导报, 2023, 37(16): 21120021-6.
ZHOU Zhenzhen, WANG Zuojin, JIAO Shishun, CAO Rui. Effects of Different Rolling Temperatures on Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy. Materials Reports, 2023, 37(16): 21120021-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120021  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21120021
1 Yeh J W, Chen S K, et al. Advanced Engineering Materials, 2004,6(5),299.
2 Michael, Gao M C. Jom, 2013, 65(12),1749.
3 Santodonato L J, Zhang Y, Feygenson M, et al. Nature Communications, 2015, 6,5964.
4 Yang X, Zhang Y. Materials Chemistry and Physics, 2012, 132( 2–3),233.
5 Guo N N, Gao X J, Li X Y, et al. Chinese Journal of Rare Metals, 2021, 45(6), 728(in Chinese).
郭娜娜, 高绪杰, 李肖逸, 等. 稀有金属, 2021, 45(6), 728.
6 George E P, Raabe D, Ritchie R O. Nature reviews Materials, 2019, 4, 515.
7 Li J G, Huang R R, Zhang Q, et al. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2),333 (in Chinese).
李建国, 黄瑞瑞, 张倩, 等. 力学学报, 2020, 52(2),333.
8 Zou Y, Ma H, Spolenak R. Nature Communications, 2015, 6,7748.
9 Otto F, Dlouhy A, Somsen C, et al. Acta Materialia, 2013, 61( 15),5743.
10 George E P, Curtin W A, Tasan C C. Acta Materialia, 2020, 188, 435.
11 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887.
12 Zheng B, Liu Q B, Zhang L Y. Advanced Materials Research, 2013, 820,63.
13 Lin L R. The structure and properties of quinary high entropy alloys with high melting temperature. Master's Thesis, Harbin Institute of Technology, 2007 (in Chinese).
林丽蓉. 高熔化温度五元高熵合金组织及性能研究. 硕士学位论文, 哈尔滨工业大学, 2007.
14 Ye Q, Yang G, Yang B. Journal of Alloys and Compounds, 2021, 869(5),159336.
15 Lu Y, Dong Y, Guo S, et al. Rep, 2014, 4,6200.
16 Wang L, Wu X, Yao C, et al. Metallurgical and Materials Transactions, 2020, 51(11),5781.
17 Zhang Y, Li J, Wang X, et al. Journal of Materials Science & Technology, 2019, 35(5),5.
18 Tan Y Q, Wang X M, Zhu S, et al. Materials Reports, 2020,34(3),05120 (in Chinese).
谭雅琴, 王晓明, 朱胜,等. 材料导报, 2020,34(3),05120.
19 Sathiaraj G D, Bhattacharjee P P. Materials Characterization, 2015, 109,189.
20 Seelam R R, Yoshida S, Bhattacharjee P P, et al. Scientific Reports, 2019, 9(1),11505.
21 Yang J. Effect of grain refinement and precipitation strengthening on mechanical properties of Al0.1CoCrFeNi high entropy alloy. Master's Thesis, Taiyuan University of Technology, China, 2019 (in Chinese).
杨静. 细化晶粒及析出强化对Al0.1CoCrFeNi高熵合金力学性能的影响. 硕士学位论文, 太原理工大学, 2019.
22 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016,4, 174.
23 Wu M, Yang C, Kuijer M, et al. Materials Characterization, 2019, 158,109983.
24 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science & Engineering A,2016,675, 99.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[5] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[6] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[7] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[8] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[9] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[10] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[11] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[12] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[13] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[14] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[15] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed