Photocatalytic Degradation for Benzene Series in Wide-band Gap Metal Oxide: Reaction Mechanism and Modification Strategies
CHEN Lyucun1,2, CUI Wen1, CHEN Peng1, LI Kanglu1, DONG Fan1,2, WANG Fali3
1 Center of Environmental and Energy Catalysis, University of Electronic Science and Technology of China, Chengdu 610000, China 2 Yangtze Delta Region Institute (Huzhou),University of Electronic Science and Technology of China, Huzhou 313000, China 3 Ecological Environment Monitoring Station of Chongqing Wansheng Economic and Technological Development Zone, Chongqing 400800, China
Abstract: Benzene compounds are widely present in water bodies and atmospheric environments, and their refractory and highly toxic characteristics pose a serious threat to human health and the ecological environment. Photocatalytic technology has attracted much attention in pollutant degradation and energy conversion because of mild reaction conditions, strong redox ability, and green and no secondary pollution, especially for the treatment of refractory benzene series. The advantages of positive valence band position, strong oxidation ability, high photochemistry stability and lower cost on wide-band gap photocatalysts play important role in benzene series degradation. However, wide band gap photocatalysts have limited photo-response range, higher surface potential and difficult separation of photo-generated electron-hole pairs, which limit their application in actual treatment processes. In addition, the effects of wide variety of benzene series, complex structure, and the current in-situ characterization technology limited the understanding of the conversion and ring opening mechanism of benzene series. That restricts the design and preparation for efficient photocatalysts and photocatalytic technology for the practical application in benzene treatment. This review focuses on the important progress about wide-band gap photocatalytic oxidation technology in the degradation of benzene series, and introduces the latest developments about the reaction mechanism of photocatalytic benzene series degradation, the performance influencing factors of wide-band gap semiconductors, and the modification strategies on wide-band gap semiconductors. Finally, the prospects in reaction mechanism research, degradation efficiency enhancement and practical application are put forward.
作者简介: 陈侣存,2021年6月毕业于西南石油大学,获得工学博士学位。现为电子科技大学材料科学与工程博士后,在合作导师董帆教授的指导下开展研究工作。主要研究VOCs催化治理技术及反应机理。近年来,在光催化环境和能源领域发表论文11篇,包括Applied Catalysis B: Environmental, ACS Applied Mate-rials & Interface, Science Bulletin, Energy & Environmental Materials等。 董帆,电子科技大学基础与前沿研究院教授,博士研究生导师。2010年6月毕业于浙江大学,获得环境工程工学博士学位,香港理工大学访问学者。从事研究领域包括:环境与能源催化材料、光电催化与能源转化、气体传感材料与器件和材料模拟计算等。入选国家青年人才(2018年)、国家优秀青年科学基金获得者(2018年)、国务院政府特殊津贴专家(2019年)、四川省特聘专家(2019年)、四川省杰青青年科技人才(2020年)、科睿唯安“全球高被引科学家”和Elsevier“中国高被引学者” (2018—2020年)等。在ACS Nano、ACS Catalysis、Environmental Science & Technology、Materials Today、Nano Energy、Angewandte Chemie、Applied Catalysis B: Environmental、Journal of Catalysis、Science Bulletin、Advanced Materials和Advanced Functional Materials等期刊上发表SCI论文300余篇,被SCI引用22000余次,H index为78。有55篇论文入选全球ESI高被引用/热点论文,1篇论文入选2015年中国百篇最具影响力国际学术论文。申请国家发明专利30项,其中已获得发明专利授权20项。目前担任Chinese Chemical Letters副主编,Science Bulletin、Chinese Journal of Catalysis、 ACS ES&T Enginee-ring、《物理化学学报》等SCI期刊的编委和Frontiers in Environmental Chemistry专业主编。
引用本文:
陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
CHEN Lyucun, CUI Wen, CHEN Peng, LI Kanglu, DONG Fan, WANG Fali. Photocatalytic Degradation for Benzene Series in Wide-band Gap Metal Oxide: Reaction Mechanism and Modification Strategies. Materials Reports, 2021, 35(21): 21001-21011.
1 Gandolfo A, Marque S, Temime-Roussel B, et al. Environmental Science & Technology, 2018, 52, 11328. 2 Dou H, Long D, Rao X, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 4456. 3 Luo J, Zhang S, Sun M, et al. ACS Nano, 2019, 13, 9811. 4 Wang Z, Li C, Domen K.Chemical Society Reviews, 2019, 48, 2109. 5 Cao S, Li H, Tong T, et al. Advanced Functional Materials, 2018, 28,1802169.1 . 6 Lai X X, Feng J, Zhou X Y,et al. Acta Physico-Chimica Sinica, 2020,36(8), 35(in Chinese). 赖潇潇, 冯洁, 周晓英,等.物理化学学报, 2020,36(8), 35. 7 Tong H, Ouyang S, Bi Y, et al.Advanced Materials, 2012, 24, 229. 8 Loeb S K, Alvarez P J J, Brame J A, et al. Environmental Science & Technology, 2019, 53, 2937. 9 Zhang E, Wang T, Yu K, et al.Journal of the American Chemical Society, 2019, 141, 16569. 10 Wang C, Sun Z, Zheng Y, et al. Journal of Materials Chemistry A, 2019, 7, 865. 11 Xiong J, Song P, Di J, et al.Journal of Materials Chemistry A, 2019, 7, 25203. 12 Cheng M, Xiao C, Xie Y.Journal of Materials Chemistry A, 2019, 7, 19616. 13 Li Y, Ouyang S, Xu H, et al.Advanced Functional Materials, 2019,29, 1901024. 14 Xiong J, Di J, Xia J, et al. Advanced Functional Materials, 2018, 28, 1801983. 15 Woods-Robinson R, Han Y, Zhang H, et al.Chemical Reviews, 2020, 120, 4007. 16 Ong W J, Tan L L, Ng Y H, et al. Chemical Reviews, 2016, 116, 7159. 17 Xue J, Huang C, Xu P, et al.Applied Organometallic Chemistry, DOI:10.1002/aoc.4966. 18 Yang J L. Acta Physico-Chimica Sinica, 2021, 37(8), 10(in Chinese). 杨金龙.物理化学学报, 2021, 37(8),10. 19 Wenderich K, Mul G.Chemical Reviews, 2016, 116, 14587. 20 Zhu X, Jia H, Zhu X M, et al. Advanced Functional Materials, 2017, 27, 1700016. 21 Shiraishi Y, Saito N, Hirai T, et al. Journal of the American Chemical Society, 2005, 127,12820. 22 Nosaka Y, Nosaka A Y, et al.Chemical Reviews, 2017, 117, 11302. 23 Lin Y, Li D, Hu J, et al. Journal of Physical Chemistry C, 2012, 116, 5764. 24 Li K, He Y, Li J, et al. Journal of Hazardous Materials, 2021, 416,126208. 25 Xu C, Pan Y, Wan G, et al. Journal of the American Chemical Society, 2019, 141, 19110. 26 Ardizzone S, Bianchi C L, Cappelletti G, et al.Environmental Science & Technology, 2008, 42, 6671. 27 Wang H, Dong X, Cui W, et al.Catalysis Science & Technology, 2019, 9, 2952. 28 Bianchi C L, Gatto S, Pirola C, et al. Applied Catalysis B-Environmental, 2014, 146, 123. 29 d'Hennezel O, Pichat P, Ollis D F. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118, 197. 30 Wrobel G, Piech M, Dardona S, et al.Crystal Growth & Design, 2009, 9, 4456. 31 Nimlos M R, Wolfrum E J, Brewer M L, et al. Environmental Science & Technology, 1996, 30, 3102. 32 Peral J, Ollis D F. Journal of Catalysis, 1992, 136, 554. 33 Shafaei A, Nikazar M, Arami M.Desalination, 2010, 252, 8. 34 Tran H, Chiang K, Scott J, et al. Photochemical & Photobiological Sciences, 2005, 4, 565. 35 Fu X, Wang X, Ding Z, et al.Applied Catalysis B-Environmental, 2009, 91, 67. 36 Kim S B, Hwang H T, Hong S C. Chemosphere, 2002, 48, 437. 37 Einaga H,Futamura S, Ibusuki T. Physical Chemistry Chemical Physics, 1999,1, 4903. 38 Huang D, Fu X, Long J, et al. Chemical Engineering Journal, 2015, 269, 168. 39 Chen R, Li J, Sheng J,et al. Applied Catalysis B-Environmental, 2020,278, 119318. 40 Li J, Chen R, Cui W, et al. ACS Catalysis, 2020, 10, 7230. 41 Abou-Ghanem M, Oliynyk A O, Chen Z, et al. Environmental Science & Technology, 2020, 54, 13509. 42 Chen Z, Peng Y, Chen J, et al.Environmental Science & Technology, 2020, 54, 14465. 43 Liu Z X,Li W B. Acta Physico-Chimica Sinica, 2016(7),1795(in Chinese). 刘兆信, 黎维彬. 物理化学学报, 2016(7),1795. 44 Zhang X, Huang J, Ding K, et al.Environmental Science & Technology, 2009, 43, 5947. 45 Xue H, Li Z, Wu L, et al. Journal of Physical Chemistry C, 2008, 112, 5850. 46 Liang S, Wen L, Liu G, et al.Catalysis Today, 2013,201, 175. 47 Chen X, Xue H, Li Z, et al. Journal of Physical Chemistry C, 2008, 112, 20393. 48 Huang J, Ding K, Wang X, et al.Langmuir, 2009, 25, 8313. 49 Huang J, Wang X, Hou Y, et al. Environmental Science & Technology, 2008,42, 7387. 50 Long B, Huang J, Wang X.Progress in Natural Science-Materials International, 2012, 22,645. 51 Wang J, Li J, Li H, et al. Chemical Engineering Journal, 2017, 330, 433. 52 Harn Y W, Liang S, Liu S L, et al. Proceedings of the National Academy of Sciences, 2021, 118(25),e2014086118 53 Henderson M A, Epling W S, Peden C H F, et al. Journal of Physical Chemistry B, 2003,107, 534. 54 Nagao M, Suda Y.Langmuir, 1989, 5, 42. 55 Lin H, Long J, Gu Q, et al. Physical Chemistry Chemical Physics, 2012, 14, 9468. 56 Ibusuki T, Takeuchi K.Atmospheric Environment, 1986, 20, 1711. 57 Sun M, Li D, Zheng Y,et al. Environmental Science & Technology, 2009, 43, 7877. 58 Sun M, Li D, Chen Y, et al. Journal of Physical Chemistry C, 2009, 113, 13825. 59 Huang R, Xu X, Zhu J,et al. Applied Catalysis B-Environmental, 2012, 127, 205. 60 Yan T, Long J, Shi X, et al. Environmental Science & Technology, 2010, 44, 1380. 61 Sun J, Li X, Zhao Q, et al. Journal of Materials Chemistry A, 2015, 3, 21655. 62 Li Y, Wu X, Ho W, et al. Chemical Engineering Journal, 2018, 336, 200. 63 Kong J, Rui Z, et al.Industrial & Engineering Chemistry Research, 2017, 56, 9999. 64 Shen Y, Wang L, Wu Y, et al. Catalysis Communications, 2015, 68, 11. 65 Zhang Y C, Afzal N, Pan L, et al. Advanced Science, 2019, 6,1900053. 66 Lei B, Cui W, Sheng J, et al. Science Bulletin, 2020, 65, 467. 67 Sun M, Li D, Zhang W, et al. Journal of Physical Chemistry C, 2009, 113, 14916. 68 Dong X A, Cui W, Wang H, et al. Science Bulletin, 2019, 64, 669. 69 Lv Y, Zhu Y, Zhu Y.Journal of Physical Chemistry C, 2013, 117, 18520. 70 Li J, Li K, Lei B, et al. Chemical Engineering Journal, 2021,413, 127389. 71 Li J, Dong X, Zhang G, et al. Journal of Materials Chemistry A, 2019, 7, 3366. 72 Li J, Li X, Yin Z, et al.ACS Applied Materials & Interfaces, 2019, 11, 29004. 73 Fontelles-Carceller O, Munoz-Batista M J, Fernandez-Garcia M, et al. ACS Applied Materials & Interfaces, 2016, 8, 2617. 74 Wang Q, Li Y, Serrano-Lotina A, et al. Journal of the American Chemical Society, 2021, 143, 196. 75 Fang J, Chen Z, Zheng Q, et al. Catalysis Science & Technology, 2017, 7, 3303. 76 Zhang X, Wang L, Zhou X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 13395. 77 Hani, Gnayem, Yoel, et al.The Journal of Physical Chemistry C, 2015, 119(33), 19201. 78 Wang J, Li J, Yang W, et al.Applied Catalysis B Environmental, 2021, 297, 120489. 79 Kong J, Rui Z, Ji H.Industrial & Engineering Chemistry Research, 2016, 55, 11923. 80 Soltani T, Lee B K. Journal of Hazardous Materials, 2016, 316, 122. 81 Shu Y J, Liang S M,Xiao J Y,et al.Acta Physico-Chimica Sinica,2021,37(8),11(in Chinese). 舒亚婕, 梁诗敏, 肖家勇,等. 物理化学学报, 2021,37(8),11. 82 Ullah R, Sun H, Wang S, et al. Industrial & Engineering Chemistry Research, 2012, 51, 1563. 83 Weikang J I, Shen T, Kong J, et al. Industrial & Engineering Chemistry Research, 2018, 57,12766. 84 Wu H, Wang J, Chen R, et al. Chinese Journal of Catalysis, 2021, 42, 1195. 85 Kamaei M, Rashedi H, Dastgheib S M, et al. Catalysts, 2018, 8, 466. 86 Mansoubi H, Fatemi S, Mansourpour Z J P S. Particulate Science and Technology, 2016,36, 162. 87 Higashimoto S, Tanihata W, Nakagawa Y, et al. Applied Catalysis A: General, 2008, 340, 98. 88 Sirivallop A, Escobedo S, Areerob T, et al.Catalysts, 2021, 11, 529. 89 Chen R, Lu J, Xiao J, et al.Solid State Sciences, 2017, 71, 14. 90 Sun J, Li X, Zhao Q, et al. Journal of Physical Chemistry C, 2014,118, 10113. 91 Fu X, Wang J, Huang D, et al. ACS Catalysis,2016, 6, 957. 92 Chen P, Chen L, Dong X A, et al. ACS ES&T Engineering, 2021, 1, 501. 93 Cui W, Li J, Chen L, et al.Science Bulletin, 2020, 65, 1626. 94 Ji W, Rui Z, Ji H, et al. Industrial & Engineering Chemistry Research, 2019, 58, 13950.