Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21001-21011    https://doi.org/10.11896/cldb.21090250
  环境催化材料 |
宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略
陈侣存1,2, 崔雯1, 陈鹏1, 李康璐1, 董帆1,2, 王法理3
1 电子科技大学环境与能源催化研究中心,成都 610000
2 电子科技大学长三角研究院(湖州),湖州 313000
3 重庆市万盛经济技术开发区生态环境监测站,重庆 400800
Photocatalytic Degradation for Benzene Series in Wide-band Gap Metal Oxide: Reaction Mechanism and Modification Strategies
CHEN Lyucun1,2, CUI Wen1, CHEN Peng1, LI Kanglu1, DONG Fan1,2, WANG Fali3
1 Center of Environmental and Energy Catalysis, University of Electronic Science and Technology of China, Chengdu 610000, China
2 Yangtze Delta Region Institute (Huzhou),University of Electronic Science and Technology of China, Huzhou 313000, China
3 Ecological Environment Monitoring Station of Chongqing Wansheng Economic and Technological Development Zone, Chongqing 400800, China
下载:  全 文 ( PDF ) ( 15025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 苯系物广泛存在于水体和大气环境中,难降解和高毒性的特点使其对人体健康和生态环境产生严重威胁。光催化技术因具有反应条件温和、氧化还原能力强、绿色无二次污染等特点而备受关注,可用于污染物降解、能源转化,尤其对于难降解苯系物的治理具有显著优势。
宽带隙光催化剂具有价带位置更正、氧化能力强、光化学稳定性高和造价低等特性,在苯系物降解中发挥了重要作用,被广泛应用于苯系物等难降解污染物的治理。但宽带隙光催化剂光响应范围有限、表面电势高和光生电子空穴对难以分离等特点,限制了其在实际治理工艺中的应用。另外,苯系物种类繁多、结构复杂,以及当前原位表征技术尚未普及等因素,导致对苯系物的转化机理和开环机理的认识不足,制约了高效治理苯系物光催化剂的设计制备和光催化技术在治理苯系物方面的实际应用。
基于以上问题,本文围绕宽带隙光催化氧化技术在苯系物降解中的重要进展,介绍了光催化降解苯系物的反应机理、宽带隙半导体性能影响因素,总结了宽带隙光催化剂改性策略的最新进展并分析了其形成机制和促进光催化苯系物降解的作用机理,最后针对宽带隙光催化剂降解反应机理的研究、提高降解效率和实际应用等方面提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈侣存
崔雯
陈鹏
李康璐
董帆
王法理
关键词:  苯系物  光催化  宽带隙  反应机理  改性策略    
Abstract: Benzene compounds are widely present in water bodies and atmospheric environments, and their refractory and highly toxic characteristics pose a serious threat to human health and the ecological environment. Photocatalytic technology has attracted much attention in pollutant degradation and energy conversion because of mild reaction conditions, strong redox ability, and green and no secondary pollution, especially for the treatment of refractory benzene series.
The advantages of positive valence band position, strong oxidation ability, high photochemistry stability and lower cost on wide-band gap photocatalysts play important role in benzene series degradation. However, wide band gap photocatalysts have limited photo-response range, higher surface potential and difficult separation of photo-generated electron-hole pairs, which limit their application in actual treatment processes. In addition, the effects of wide variety of benzene series, complex structure, and the current in-situ characterization technology limited the understanding of the conversion and ring opening mechanism of benzene series. That restricts the design and preparation for efficient photocatalysts and photocatalytic technology for the practical application in benzene treatment.
This review focuses on the important progress about wide-band gap photocatalytic oxidation technology in the degradation of benzene series, and introduces the latest developments about the reaction mechanism of photocatalytic benzene series degradation, the performance influencing factors of wide-band gap semiconductors, and the modification strategies on wide-band gap semiconductors. Finally, the prospects in reaction mechanism research, degradation efficiency enhancement and practical application are put forward.
Key words:  benzene series    photocatalysis    wide band gap    reaction mechanism    modification strategies
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  X511  
基金资助: 国家自然科学基金(21822601;22006009);四川省科技创新苗子工程资助项目(2021077);重庆市科委基金(cstc2019jscx-msxmX0374)
通讯作者:  dfctbu@126.com   
作者简介:  陈侣存,2021年6月毕业于西南石油大学,获得工学博士学位。现为电子科技大学材料科学与工程博士后,在合作导师董帆教授的指导下开展研究工作。主要研究VOCs催化治理技术及反应机理。近年来,在光催化环境和能源领域发表论文11篇,包括Applied Catalysis B: Environmental, ACS Applied Mate-rials & Interface, Science Bulletin, Energy & Environmental Materials等。
董帆,电子科技大学基础与前沿研究院教授,博士研究生导师。2010年6月毕业于浙江大学,获得环境工程工学博士学位,香港理工大学访问学者。从事研究领域包括:环境与能源催化材料、光电催化与能源转化、气体传感材料与器件和材料模拟计算等。入选国家青年人才(2018年)、国家优秀青年科学基金获得者(2018年)、国务院政府特殊津贴专家(2019年)、四川省特聘专家(2019年)、四川省杰青青年科技人才(2020年)、科睿唯安“全球高被引科学家”和Elsevier“中国高被引学者” (2018—2020年)等。在ACS Nano、ACS Catalysis、Environmental Science & Technology、Materials Today、Nano Energy、Angewandte Chemie、Applied Catalysis B: Environmental、Journal of Catalysis、Science Bulletin、Advanced Materials和Advanced Functional Materials等期刊上发表SCI论文300余篇,被SCI引用22000余次,H index为78。有55篇论文入选全球ESI高被引用/热点论文,1篇论文入选2015年中国百篇最具影响力国际学术论文。申请国家发明专利30项,其中已获得发明专利授权20项。目前担任Chinese Chemical Letters副主编,Science Bulletin、Chinese Journal of Catalysis、 ACS ES&T Enginee-ring、《物理化学学报》等SCI期刊的编委和Frontiers in Environmental Chemistry专业主编。
引用本文:    
陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
CHEN Lyucun, CUI Wen, CHEN Peng, LI Kanglu, DONG Fan, WANG Fali. Photocatalytic Degradation for Benzene Series in Wide-band Gap Metal Oxide: Reaction Mechanism and Modification Strategies. Materials Reports, 2021, 35(21): 21001-21011.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090250  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21001
1 Gandolfo A, Marque S, Temime-Roussel B, et al. Environmental Science & Technology, 2018, 52, 11328.
2 Dou H, Long D, Rao X, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7, 4456.
3 Luo J, Zhang S, Sun M, et al. ACS Nano, 2019, 13, 9811.
4 Wang Z, Li C, Domen K.Chemical Society Reviews, 2019, 48, 2109.
5 Cao S, Li H, Tong T, et al. Advanced Functional Materials, 2018, 28,1802169.1 .
6 Lai X X, Feng J, Zhou X Y,et al. Acta Physico-Chimica Sinica, 2020,36(8), 35(in Chinese).
赖潇潇, 冯洁, 周晓英,等.物理化学学报, 2020,36(8), 35.
7 Tong H, Ouyang S, Bi Y, et al.Advanced Materials, 2012, 24, 229.
8 Loeb S K, Alvarez P J J, Brame J A, et al. Environmental Science & Technology, 2019, 53, 2937.
9 Zhang E, Wang T, Yu K, et al.Journal of the American Chemical Society, 2019, 141, 16569.
10 Wang C, Sun Z, Zheng Y, et al. Journal of Materials Chemistry A, 2019, 7, 865.
11 Xiong J, Song P, Di J, et al.Journal of Materials Chemistry A, 2019, 7, 25203.
12 Cheng M, Xiao C, Xie Y.Journal of Materials Chemistry A, 2019, 7, 19616.
13 Li Y, Ouyang S, Xu H, et al.Advanced Functional Materials, 2019,29, 1901024.
14 Xiong J, Di J, Xia J, et al. Advanced Functional Materials, 2018, 28, 1801983.
15 Woods-Robinson R, Han Y, Zhang H, et al.Chemical Reviews, 2020, 120, 4007.
16 Ong W J, Tan L L, Ng Y H, et al. Chemical Reviews, 2016, 116, 7159.
17 Xue J, Huang C, Xu P, et al.Applied Organometallic Chemistry, DOI:10.1002/aoc.4966.
18 Yang J L. Acta Physico-Chimica Sinica, 2021, 37(8), 10(in Chinese).
杨金龙.物理化学学报, 2021, 37(8),10.
19 Wenderich K, Mul G.Chemical Reviews, 2016, 116, 14587.
20 Zhu X, Jia H, Zhu X M, et al. Advanced Functional Materials, 2017, 27, 1700016.
21 Shiraishi Y, Saito N, Hirai T, et al. Journal of the American Chemical Society, 2005, 127,12820.
22 Nosaka Y, Nosaka A Y, et al.Chemical Reviews, 2017, 117, 11302.
23 Lin Y, Li D, Hu J, et al. Journal of Physical Chemistry C, 2012, 116, 5764.
24 Li K, He Y, Li J, et al. Journal of Hazardous Materials, 2021, 416,126208.
25 Xu C, Pan Y, Wan G, et al. Journal of the American Chemical Society, 2019, 141, 19110.
26 Ardizzone S, Bianchi C L, Cappelletti G, et al.Environmental Science & Technology, 2008, 42, 6671.
27 Wang H, Dong X, Cui W, et al.Catalysis Science & Technology, 2019, 9, 2952.
28 Bianchi C L, Gatto S, Pirola C, et al. Applied Catalysis B-Environmental, 2014, 146, 123.
29 d'Hennezel O, Pichat P, Ollis D F. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118, 197.
30 Wrobel G, Piech M, Dardona S, et al.Crystal Growth & Design, 2009, 9, 4456.
31 Nimlos M R, Wolfrum E J, Brewer M L, et al. Environmental Science & Technology, 1996, 30, 3102.
32 Peral J, Ollis D F. Journal of Catalysis, 1992, 136, 554.
33 Shafaei A, Nikazar M, Arami M.Desalination, 2010, 252, 8.
34 Tran H, Chiang K, Scott J, et al. Photochemical & Photobiological Sciences, 2005, 4, 565.
35 Fu X, Wang X, Ding Z, et al.Applied Catalysis B-Environmental, 2009, 91, 67.
36 Kim S B, Hwang H T, Hong S C. Chemosphere, 2002, 48, 437.
37 Einaga H,Futamura S, Ibusuki T. Physical Chemistry Chemical Physics, 1999,1, 4903.
38 Huang D, Fu X, Long J, et al. Chemical Engineering Journal, 2015, 269, 168.
39 Chen R, Li J, Sheng J,et al. Applied Catalysis B-Environmental, 2020,278, 119318.
40 Li J, Chen R, Cui W, et al. ACS Catalysis, 2020, 10, 7230.
41 Abou-Ghanem M, Oliynyk A O, Chen Z, et al. Environmental Science & Technology, 2020, 54, 13509.
42 Chen Z, Peng Y, Chen J, et al.Environmental Science & Technology, 2020, 54, 14465.
43 Liu Z X,Li W B. Acta Physico-Chimica Sinica, 2016(7),1795(in Chinese).
刘兆信, 黎维彬. 物理化学学报, 2016(7),1795.
44 Zhang X, Huang J, Ding K, et al.Environmental Science & Technology, 2009, 43, 5947.
45 Xue H, Li Z, Wu L, et al. Journal of Physical Chemistry C, 2008, 112, 5850.
46 Liang S, Wen L, Liu G, et al.Catalysis Today, 2013,201, 175.
47 Chen X, Xue H, Li Z, et al. Journal of Physical Chemistry C, 2008, 112, 20393.
48 Huang J, Ding K, Wang X, et al.Langmuir, 2009, 25, 8313.
49 Huang J, Wang X, Hou Y, et al. Environmental Science & Technology, 2008,42, 7387.
50 Long B, Huang J, Wang X.Progress in Natural Science-Materials International, 2012, 22,645.
51 Wang J, Li J, Li H, et al. Chemical Engineering Journal, 2017, 330, 433.
52 Harn Y W, Liang S, Liu S L, et al. Proceedings of the National Academy of Sciences, 2021, 118(25),e2014086118
53 Henderson M A, Epling W S, Peden C H F, et al. Journal of Physical Chemistry B, 2003,107, 534.
54 Nagao M, Suda Y.Langmuir, 1989, 5, 42.
55 Lin H, Long J, Gu Q, et al. Physical Chemistry Chemical Physics, 2012, 14, 9468.
56 Ibusuki T, Takeuchi K.Atmospheric Environment, 1986, 20, 1711.
57 Sun M, Li D, Zheng Y,et al. Environmental Science & Technology, 2009, 43, 7877.
58 Sun M, Li D, Chen Y, et al. Journal of Physical Chemistry C, 2009, 113, 13825.
59 Huang R, Xu X, Zhu J,et al. Applied Catalysis B-Environmental, 2012, 127, 205.
60 Yan T, Long J, Shi X, et al. Environmental Science & Technology, 2010, 44, 1380.
61 Sun J, Li X, Zhao Q, et al. Journal of Materials Chemistry A, 2015, 3, 21655.
62 Li Y, Wu X, Ho W, et al. Chemical Engineering Journal, 2018, 336, 200.
63 Kong J, Rui Z, et al.Industrial & Engineering Chemistry Research, 2017, 56, 9999.
64 Shen Y, Wang L, Wu Y, et al. Catalysis Communications, 2015, 68, 11.
65 Zhang Y C, Afzal N, Pan L, et al. Advanced Science, 2019, 6,1900053.
66 Lei B, Cui W, Sheng J, et al. Science Bulletin, 2020, 65, 467.
67 Sun M, Li D, Zhang W, et al. Journal of Physical Chemistry C, 2009, 113, 14916.
68 Dong X A, Cui W, Wang H, et al. Science Bulletin, 2019, 64, 669.
69 Lv Y, Zhu Y, Zhu Y.Journal of Physical Chemistry C, 2013, 117, 18520.
70 Li J, Li K, Lei B, et al. Chemical Engineering Journal, 2021,413, 127389.
71 Li J, Dong X, Zhang G, et al. Journal of Materials Chemistry A, 2019, 7, 3366.
72 Li J, Li X, Yin Z, et al.ACS Applied Materials & Interfaces, 2019, 11, 29004.
73 Fontelles-Carceller O, Munoz-Batista M J, Fernandez-Garcia M, et al. ACS Applied Materials & Interfaces, 2016, 8, 2617.
74 Wang Q, Li Y, Serrano-Lotina A, et al. Journal of the American Chemical Society, 2021, 143, 196.
75 Fang J, Chen Z, Zheng Q, et al. Catalysis Science & Technology, 2017, 7, 3303.
76 Zhang X, Wang L, Zhou X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 13395.
77 Hani, Gnayem, Yoel, et al.The Journal of Physical Chemistry C, 2015, 119(33), 19201.
78 Wang J, Li J, Yang W, et al.Applied Catalysis B Environmental, 2021, 297, 120489.
79 Kong J, Rui Z, Ji H.Industrial & Engineering Chemistry Research, 2016, 55, 11923.
80 Soltani T, Lee B K. Journal of Hazardous Materials, 2016, 316, 122.
81 Shu Y J, Liang S M,Xiao J Y,et al.Acta Physico-Chimica Sinica,2021,37(8),11(in Chinese).
舒亚婕, 梁诗敏, 肖家勇,等. 物理化学学报, 2021,37(8),11.
82 Ullah R, Sun H, Wang S, et al. Industrial & Engineering Chemistry Research, 2012, 51, 1563.
83 Weikang J I, Shen T, Kong J, et al. Industrial & Engineering Chemistry Research, 2018, 57,12766.
84 Wu H, Wang J, Chen R, et al. Chinese Journal of Catalysis, 2021, 42, 1195.
85 Kamaei M, Rashedi H, Dastgheib S M, et al. Catalysts, 2018, 8, 466.
86 Mansoubi H, Fatemi S, Mansourpour Z J P S. Particulate Science and Technology, 2016,36, 162.
87 Higashimoto S, Tanihata W, Nakagawa Y, et al. Applied Catalysis A: General, 2008, 340, 98.
88 Sirivallop A, Escobedo S, Areerob T, et al.Catalysts, 2021, 11, 529.
89 Chen R, Lu J, Xiao J, et al.Solid State Sciences, 2017, 71, 14.
90 Sun J, Li X, Zhao Q, et al. Journal of Physical Chemistry C, 2014,118, 10113.
91 Fu X, Wang J, Huang D, et al. ACS Catalysis,2016, 6, 957.
92 Chen P, Chen L, Dong X A, et al. ACS ES&T Engineering, 2021, 1, 501.
93 Cui W, Li J, Chen L, et al.Science Bulletin, 2020, 65, 1626.
94 Ji W, Rui Z, Ji H, et al. Industrial & Engineering Chemistry Research, 2019, 58, 13950.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[3] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[4] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[5] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[6] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[7] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[8] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[9] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[10] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[11] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[12] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[13] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[14] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[15] 刘景景, 张泽兰, 李诗, 刘宇, 杨佩佩, 李兴. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021, 35(17): 17163-17177.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed