Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21070218-6    https://doi.org/10.11896/cldb.21070218
  无机非金属及其复合材料 |
扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究
李锺奥1, 陆春华1,*, 成亮2, Emmanuel1
1 江苏大学土木工程与力学学院,江苏 镇江 212013
2 江苏大学环境与安全工程学院,江苏 镇江 212013
Experimental Study on Repairing Vertical Cracks of Concrete by Microbial Mineralization with Diffusion Method
LI Zhongao1, LU Chunhua1,*, CHENG Liang2, Emmanuel1
1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
2 School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
下载:  全 文 ( PDF ) ( 7453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究微生物诱导碳酸钙沉淀(Microbially induced carbonate precipitation,MICP)技术对混凝土裂缝的修复效果,分别采用扩散法、注射法对竖向裂缝宽度为0.1 mm、0.2 mm和0.4 mm的混凝土试件进行了MICP修复,并从微观(生成物成分及形貌)和宏观(耐久性能和力学性能)两个角度对裂缝修复效果进行了评价和对比分析。试验结果表明:与注射法相比,扩散法中的海绵条不仅可以存储胶凝溶液,还能为碳酸钙沉积提供附着点,这使得经扩散法修复后的三种裂缝宽度的混凝土试件的防水性能和抗氯盐侵蚀性能更好,这两种性能的平均提升系数分别达到了79.7%、60.9%,但劈裂抗拉强度的提升不明显。上述研究结果表明,采用扩散法修复混凝土构件中非受力状态下的竖向裂缝是有效的,可供实际工程应用参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李锺奥
陆春华
成亮
Emmanuel
关键词:  混凝土  裂缝修复  微生物  扩散法    
Abstract: In order to investigate the effectiveness of microbially induced carbonate precipitation (MICP) in repairing concrete cracks, concrete specimens with vertical crack width of 0.1 mm, 0.2 mm and 0.4 mm were repaired by MICP with diffusion method and injection method respectively. The effectiveness of repairing cracks was evaluated from the microscopic (composition and morphology of products) and macroscopic (durability and mechanical properties) levels. The results show that the sponge strip used in diffusion method not only store cementation solution, but also provide attachment point for calcium carbonate deposition. The waterproof performance and chloride aggressive resistance of concrete specimens with three crack widths repaired by diffusion method were better than those by injection method, and the average improvement coefficients of these two properties reach 79.7% and 60.9%, respectively. However, the increase of splitting tensile strength was not obvious. The above research results show that the diffusion method was effective to repair the vertical cracks in the unstressed state of the concrete members, which can provide reference for practical engineering.
Key words:  concrete    crack repair    microorganism    diffusion method
发布日期:  2023-07-10
ZTFLH:  TU375  
基金资助: 国家自然科学基金(51878319)
通讯作者:  *陆春华,江苏大学土木工程与力学学院教授、博士研究生导师。2002年6月,在江苏大学获得建筑工程专业学士学位;2006年6月,在江苏大学获得结构工程专业硕士学位;2011年6月,在浙江大学获得结构工程专业博士学位。主要研究领域包括:混凝土结构基本性能及耐久性、FRP筋混合配筋混凝土结构性能研究。自2009年以来主持国家自然科学基金项目、中国博士后基金项目等五项,发表学术论文80余篇,其中SCI收录40余篇,获批中国及澳大利亚专利10余件,出版专著两部。lch79@mail.ujs.edu.cn   
作者简介:  李锺奥,江苏大学土木工程与力学学院土木工程专业硕士研究生。主要研究领域为利用MICP技术修复混凝土裂缝。
引用本文:    
李锺奥, 陆春华, 成亮, Emmanuel. 扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究[J]. 材料导报, 2023, 37(13): 21070218-6.
LI Zhongao, LU Chunhua, CHENG Liang, Emmanuel. Experimental Study on Repairing Vertical Cracks of Concrete by Microbial Mineralization with Diffusion Method. Materials Reports, 2023, 37(13): 21070218-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070218  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21070218
1 Lu C H, Liu R G, Cui Z W, et al. China Civil Engineering Journal, 2014, 47(12), 82(in Chinese).
陆春华, 刘荣桂, 崔钊玮, 等. 土木工程学报, 2014, 47(12), 82.
2 Fan W J, Mao J H, Jin W L, et al. Construction and Building Materials, 2021, 278(22), 122453.
3 Qian C X, Wang J Y, Wang R X, et al. Materials Science and Engineering C, 2008, 29(4), 1273.
4 Jia Q, Zhao C C, Sun Z B. Journal of Basic Science and Engineering, 2017, 25(1), 141(in Chinese).
贾强, 赵程程, 孙增斌. 应用基础与工程科学学报, 2017, 25(1), 141.
5 DeJong J T, Fritzges M B, Nüsslein K. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11), 1381.
6 Tan Q. Research on marble relics repairment by microbially induced carbonate precipitation technology. Master's Thesis, Tsinghua University, China, 2017 (in Chinese).
谭谦. 微生物用于石质文物破损修复的试验研究. 硕士学位论文, 清华大学, 2017.
7 Choi S G, Wang K J, Wen Z Y, et al. Cement and Concrete Composites, 2017, 83, 209.
8 Tittelboom K V, Belie N D, Muynck W D, et al. Cement and Concrete Research, 2009, 40(1), 157.
9 Lian J J, Wang C L, Yan Y, et al. Journal of Tianjin University (Science and Technology), 2019, 52(7), 669(in Chinese).
练继建, 王昶力, 闫玥, 等. 天津大学学报(自然科学与工程技术版), 2019, 52(7), 669.
10 Yuan J, Chen X, He H L, et al. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2), 641 (in Chinese).
袁杰, 陈歆, 何虹霖, 等. 吉林大学学报(工学版), 2020, 50(2), 641.
11 Wang R X, Qian C X, Wang J Y, et al. Journal of the Chinese Ceramic Society, 2008(10), 1378(in Chinese).
王瑞兴, 钱春香, 王剑云, 等. 硅酸盐学报, 2008(10), 1378.
12 Ren L F, Qian C X. Journal of the Chinese Ceramic Society, 2014, 42(11), 1389 (in Chinese).
任立夫, 钱春香. 硅酸盐学报, 2014, 42(11), 1389.
13 Xu J, Wang X Z. Materials Reports, 2018, 32(24), 4276 (in Chinese).
徐晶, 王先志. 材料导报, 2018, 32(24), 4276.
14 Wang Y Q, Ding W S, Zhang J F, et al. China Concrete and Cement Products, 2018(5), 10 (in Chinese).
王亚奇, 丁文胜, 张金飞, 等. 混凝土与水泥制品, 2018(5), 10.
15 Zhang Y, Guo H X, Cheng X H, et al. Industrial Construction, 2013, 43(12), 138(in Chinese).
张越, 郭红仙, 程晓辉, 等. 工业建筑, 2013, 43(12), 138.
16 Liu S, Liu H Q, Xing S. Bulletin of the Chinese Ceramic Society, 2018, 37(3), 786 (in Chinese).
刘世, 刘海卿, 邢粟. 硅酸盐通报, 2018, 37(3), 786.
17 Qian C X, Feng J H, Su Y L. Materials Reports, 2019, 33(12), 1983 (in Chinese).
钱春香, 冯建航, 苏依林. 材料导报, 2019, 33(12), 1983.
18 Jia Q, Jiang H, Zhang X. Journal of Building Materials, 2018, 21(4), 663 (in Chinese).
贾强, 姜欢, 张鑫. 建筑材料学报, 2018, 21(4), 663.
19 He J H, Guo H X, Tan Q, et al. Sciences of Conservation and Archaeology, 2019, 31(6), 46 (in Chinese).
何建宏, 郭红仙, 谭谦, 等. 文物保护与考古科学, 2019, 31(6), 46.
[1] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[2] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[3] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[4] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[5] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[6] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[7] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[8] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[9] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[10] 张建广, 陈全, 田路萍, 施柯廷, 吴敏. 环境友好型土壤重金属修复技术及其应用[J]. 材料导报, 2023, 37(5): 21030018-11.
[11] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[12] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[13] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[14] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed