Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21030018-11    https://doi.org/10.11896/cldb.21030018
  金属与金属基复合材料 |
环境友好型土壤重金属修复技术及其应用
张建广, 陈全, 田路萍, 施柯廷, 吴敏*
昆明理工大学环境科学与工程学院,云南省土壤固碳与污染控制重点实验室,昆明 650500
Environmental-friendly Remediation Technology and Its Application in Heavy Metal Polluted Soil
ZHANG Jianguang, CHEN Quan, TIAN Luping, SHI Keting, WU Min*
Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 13188KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对全球土壤重金属污染不容忽视的现状,国内外学者在土壤修复方面进行了大量研究。当前的土壤修复政策和评价标准主要指向土壤中重金属总量的减少,忽略了重金属的形态变化。然而重金属形态才是影响其生物有效性和毒性的关键因素。
2019年我国农业农村部规定在土壤污染的治理中,在达成基本目标的同时应优先考虑修复方法对土壤性质的损伤风险以及环境污染风险,防止二次污染,保证耕地可持续利用。因此,如何在对土壤环境产生最低甚至无损害的前提下减少重金属总量或改变重金属形态从而降低其风险是土壤污染修复的热点。
虽然土壤重金属污染修复技术众多,但目前对土壤无损伤且有效的土壤修复技术有固定/稳定化、植物和微生物修复这三种。固定/稳定化技术可以短期内降低土壤重金属有效性,但易失去钝化效果,导致被固定重金属的重新活化;植物、微生物修复可稳定改变重金属有效性和总量,但其修复周期长,环境限制大。
本文主要就上述三种环境友好型修复技术进行了总结分析,阐述了各修复技术的作用机制、优缺点、环境风险和应用前景,并从提高重金属生物有效性、调节生物代谢活动、吸附钝化重金属、改善土壤修复环境四个方面阐述了不同强化方式的原理、修复效果、优势以及缺陷,然后通过联合修复取长补短、强化修复途径,极大地提高重金属污染土壤修复的效率,为当前重金属污染土壤修复技术开拓思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建广
陈全
田路萍
施柯廷
吴敏
关键词:  土壤污染  生物有效性  形态  微生物  生物修复    
Abstract: Because of the widely reported soil pollution by heavy metals, scholars have conducted a lot of researches on soil remediation. At present, soil remediation policies and evaluation criteria are mainly based on the reduction of the total amount of heavy metals in soil, without enough focus on the speciation change of heavy metals. However, it has be well accepted that heavy metal speciation is the key factor affecting their bioavailability and toxicity.
The Ministry of Agriculture and Rural Affairs of the People's Republic of China stipulated in 2019 that in the control of soil pollution, it is essential to ensure the sustainable use of cultivated land after evaluating remediation technique to the damage and pollution risks to soil. Therefore, how to change the forms of heavy metals and make the agricultural products meet the standards under the premise of minimal or even no damage to the soil environment is a hot spot of soil pollution remediation.
The immobilization/stabilization, plant extraction and microbial remediation techniques are considered environmental-friendly methods to improve soil quality after reducing the bioavailable species or even the total amount of heavy metals in soils. The immobilization/stabilization can reduce the bioavailable fractions of heavy metals in a short term, while its effect can easily disappear in natural scenarios, resulting in the reactivation of fixed heavy metals. Although the phytoremediation and microbial remediation can stably change the bioavailable fractions and total amount of heavy metals, the applications are restricted to the remediation cycle and environmental restrictions.
In this paper, the mechanisms of above three techniques were summarized and analyzed. The advantages and disadvantages, environmental risks and application prospects of each remediation technology were expounded. The principles, remediation effects, advantages and defects of different remediation methods were discussed in details from four aspects: improving the bioavailability of heavy metals, promoting biological metabolic activities, adsorbing and immobilizing heavy metals, and improving the soil remediation environment. In order to break through the bottlenecks existing in single remediation techniques and deal with the complex pollution of heavy metals, combined remediations are highly recommended to improve the efficiency of soil remediation. This review paper will provide useful information to develop effective remediation technology for heavy metal contaminated soils.
Key words:  soil pollution    bioavailability    speciation    microorganism    phytoremediation
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  X53  
基金资助: 国家自然科学基金(41977334; 42067055);云南省重点科技计划项目(202101AW070008; 202001AS070015)
通讯作者:  *吴敏,昆明理工大学环境科学与工程学院教授、博士研究生导师。2002年本科毕业于武汉大学,2005年获得北京大学硕士学位,2012年获得昆明理工大学博士学位,2014—2015年在美国麻省大学农学院进行博士后研究。从污染物环境归趋行为研究入手,针对土壤修复、改良、生物毒理学中的关键科学问题展开基础性研究。主持5项国家基金,发表学术论文80余篇,其中48篇被SCI收录。minwup@kust.edu.cn   
作者简介:  张建广,昆明理工大学环境科学与工程学院硕士研究生,在云南省土壤固碳与污染控制重点实验室进行土壤重金属污染修复与治理方面的研究。
引用本文:    
张建广, 陈全, 田路萍, 施柯廷, 吴敏. 环境友好型土壤重金属修复技术及其应用[J]. 材料导报, 2023, 37(5): 21030018-11.
ZHANG Jianguang, CHEN Quan, TIAN Luping, SHI Keting, WU Min. Environmental-friendly Remediation Technology and Its Application in Heavy Metal Polluted Soil. Materials Reports, 2023, 37(5): 21030018-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030018  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21030018
1 Li Z Y, Ma Z W, Van Der Kuijp T J, et al. Science of the Total Environment, 2014, s468-469, 843.
2 Osman K T. Netherlands, Springer, 2014.
3 Wu Y. Chemical Enterprise Management, 2020(31), 51 (in Chinese).
武越. 化工管理, 2020(31), 51.
4 Wang X L, Wang C Y, Wu X C, et al. Chemistry and Bioengineering, 2019, 36(2), 4 (in Chinese).
王兴利, 王晨野, 吴晓晨, 等. 化学与生物工程, 2019, 36(2), 4.
5 Wu K L. South China Agriculture, 2020, 14(23), 217 (in Chinese).
吴昆伦. 南方农业, 2020, 14(23), 217.
6 Shen H L, He Z Y, Ma M. Plant Physiology Journal, 2014, 50(5), 591 (in Chinese).
申红玲, 何振艳, 麻密. 植物生理学报, 2014, 50(5), 591.
7 Yang W L, Shen Y T. Rock and Mineral Analysis, 2020, 39(4), 475.
杨文蕾, 沈亚婷. 岩矿测试, 2020, 39(4), 475.
8 Han Z X, Wang L S, Guo J Q, et al. Acta Petrologica Et Mineralogica, 2012, 31(2), 271.
9 Dhaliwal S S, Singh J, Taneja P K, et al. Environmental Science and Pollution Research, 2020, 27(2), 1319.
10 Xie Y F, Liu D, Chen Z N, et al. Jiangsu Agricultural Sciences, 2020, 48(18), 30.
谢玉峰, 刘迪, 陈振宁, 等. 江苏农业科学, 2020, 48(18), 30 (in Chinese).
11 Ao Z Q, Xiong J H, Wang S F, et al. Guangdong Agricultural Sciences, 2011, 38(20), 139 (in Chinese).
敖子强, 熊继海, 王顺发, 等. 广东农业科学, 2011, 38(20), 139.
12 Xu Z G, Ding Y, Huang H M, et al. Polish Journal of Environmental Studies, 2019, 28(1), 463.
13 Li D R, Yang W W, Li Q J, et al. Chinese Journal of Soil Science, 2015, 46(4), 977.
14 Boisson J, Ruttens A, Mench M, et al. Environmental Pollution, 1999, 104(2), 225.
15 Yin X L, Xu Y M, Huang R, et al. Environmental Science-Processes and Impacts, 2017, 19(12), 156.
16 Wu C H, Li L, Yan B, et al. Journal of Agro-Environment Science, 2017, 36(10), 1672.
17 Calace N, Campisi T, Iacondini A, et al. Environmental Pollution, 2005, 136(3), 485.
18 Kong S, Tang J, Ouyang F, et al. Environmental Technology Innovation, 2021, 23(1-2), 101670.
19 Wang Y, Xu Y, Li D, et al. Science of the Total Environment, 2018, 621, 1057.
20 Tatiana D, García A, Guedes J, et al. Plos One, 2016, 11(6), e0157547.
21 Yanfeng L, Changxin L I, Jiang R, et al. Journal of Nuclear Agricultural Sciences, 2017, 31(6), 1166.
22 Yang Z M, Fang Z Q. Environmental Protection of Chemical Industry, 2014, 34(6), 525 (in Chinese).
杨璋梅, 方战强. 化工环保, 2014, 34(6), 525.
23 Li M L, Ding L, Yao K, et al. Chinese Journal of Environmental Engineering, 2016, 10(6), 3275 (in Chinese).
李丽明, 丁玲, 姚琨, 等. 环境工程学报, 2016, 10(6), 3275.
24 Men S H, Huang Z B, Li F Z, et al. China Environmental Science. 2020, 40(6), 2615 (in Chinese).
门姝慧, 黄占斌, 李昉泽, 等. 中国环境科学, 2020, 40(6), 2615.
25 Guo Z, Hu X, Ao Y S. Journal of Hazardous Materials, 2009, 167(1-3), 1148.
26 Wu C, Cui M Q, Xue S G, et al. Environmental Science and Pollution Research, 2018, 25(21), 20792.
27 Dong S K, Xu W L, Wu F F. et al. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15), 204.
董双快, 徐万里, 吴福飞, 等. 农业工程学报, 2016, 32(15), 204.
28 Yang J K, Zhu L N, Yang Q Y, et al. Journal of Ecology and Rural Environment, 2021, 37(6), 808 (in Chinese).
杨金康, 朱利楠, 杨秋云, 等. 生态与农村环境学报, 2021, 37(6), 808.
29 Yang Z M, Fang Z Q, Tsang P E, et al. Journal of Environmental Management, 2016, 182, 247.
30 Mo H M, Qin X Z, Mao J, et al. Acta Scientiae Circumstantiae, 2020, 40(5), 1821 (in Chinese).
莫慧敏, 秦兴姿, 毛珺, 等. 环境科学学报, 2020, 40(5), 1821.
31 Fan J, Chen X, Xu Z B, et al. Journal of Hazardous Materials, 2020, 398, 122901.
32 Zhang Q. Effects and mechsnism of remediation of amendments in Cd-Zn contaminated soils. Master's Thesis, Chinese Academy of Agricultural Sciences, China, 2005 (in Chinese).
张青. 改良剂对镉锌复合污染土壤修复作用及机理研究. 硕士学位论文, 中国农业科学院, 2005.
33 Liu S, Xie Z, Zhu Y, et al. Environmental Technology and Innovation, 2021, 1, 101388.
34 Li D R, Yang W W, Li Q J, et al. Chinese Journal of Soil Science, 2015, 46(4), 977.
35 Liu X, Yang L, Zhao H, et al. The Science of the Total Environment, 2020, 708, 134479.
36 Warren G P, Alloway B J, Lepp N W, et al. Science of the Total Environment, 2003, 311(1-3), 19.
37 Chen W Y, Geng Q F, Wang Y, et al. Guangdong Chemical Industry, 2020, 47(2), 87 (in Chinese).
陈文艳, 耿庆芬, 王燕, 等. 广东化工, 2020, 47(2), 87.
38 Wu X, Xu L Y, Zhang X X, et al. Environmental Science, 2012, 33(1), 273 (in Chinese).
吴锡, 许丽英, 张雪霞, 等. 环境科学, 2012, 33(1), 273.
39 Shen Z T, Jin F, O'Connor D, et al. Environmental Science and Technology, 2019, 53(20), 11615.
40 Nie S Y. Anhui Agricultural Science Bulletin, 2020, 26(5), 101 (in Chinese).
聂司宇. 安徽农学通报, 2020, 26(5), 101.
41 Shi P P, Xia L D, Zhou C F. Inner Mongolia Forestry Investigation and Design, 2019, 42(5), 99 (in Chinese).
石佩佩, 夏丽丹, 周垂帆. 内蒙古林业调查设计, 2019, 42(5), 99.
42 Rosenzweig A C, Argüello J M. Chapter Five-Toward a Molecular Understanding of Metal Transport by P1B-Type ATPases, Elsevier Science and Technology, Current Topics in Membranes, Netherlands, 2012.
43 Padmavathiamma P K, Li L Y. Water Air and Soil Pollution, 2007, 184(1-4), 105.
44 Covre W P, Da Silveira Pereira W V, Journal of Environmental Management, 2020, 268, 110733.
45 He C Q, Zhao Y P, Wang F F, et al. Chemosphere, 2020, 252, 126471.
46 Xie J Q, Lei M, Chen T B, et al. Acta Scientiae Circumstantiae, 2010, 30(1), 165.
谢景千, 雷梅, 陈同斌, 等. 环境科学学报, 2010, 30(1), 165.
47 Zhang J. Molecular mechanisms of Cd tolerance and accumulation in metal hyperaccumulator Sedum alfredii. Ph. D. Thesis, Zhejiang, Zhejiang University, China, 2015 (in Chinese).
张杰. 超积累植物东南景天Cd耐性和积累的分子机制. 博士学位论文, 浙江大学, 2015.
48 Long X X, Wang Y H, Liu H Y. Chinese Journal of Plant Ecology, 2008(1), 168 (in Chinese).
龙新宪, 王艳红, 刘洪彦. 植物生态学报, 2008(1), 168.
49 An J, Gong X S, Wei S H. Chinese Journal of Ecology, 2015, 34(11), 3261 (in Chinese).
安婧, 宫晓双, 魏树和. 生态学杂志, 2015, 34(11), 3261.
50 Jie H P, Liang Q R, Environmental and Experimental Botany, 2009, 66(2), 317.
51 Hu P J, Li Z, Zhong D X, et al. Plant Physiology Journal, 2014, 50(5), 577 (in Chinese).
胡鹏杰, 李柱, 钟道旭, 等. 植物生理学报, 2014, 50(5), 577.
52 Yao Y, Hu L, Li S Z, et al. Ecotoxicology and Environmental Safety, 2020, 201, 110850.
53 Jiang J, Liu H, Li Q, et al. Ecotoxicology and Environmental Safety, 2015, 120, 386.
54 Han H, Sheng X F, Hu J W, et al. Ecotoxicology and Environmental Safety, 2018, 161, 526.
55 Bennett R M, Cordero P R F, Bautista G S, et al. Chemistry and Ecology, 2013, 29(4), 320.
56 Wang T, Sun H W, Ren X H, et al. Scientific Reports, 2017, 7(1), 12114.
57 Liu H Y, Guo S S, Jiao K, et al. Journal of Hazardous Materials, 2015, 294(8), 121.
58 Wang Y, Pan Y, Yu H, et al. Journal of Hazardous Materials, 2017, 330, 1.
59 Wang Y, Zhang B W, Chen N J, et al. Journal of Soils Sediments, 2018, 18, 2136.
60 Liu P, Lei J G, Wang Y X, et al. Chinese Journal of Tropical Crops, 2017, 38(12), 2407 (in Chinese).
刘朋虎, 雷锦桂, 王义祥, 等. 热带作物学报, 2017, 38(12), 2407.
61 Dhal B, Thatoi H N, Das N N, et al. Journal of Hazardous Materials, 2013, 250-251(30), 272.
62 Cen F, Chen L, Hu Y, et al. Chemistry Ecology, 2011, 28(3), 1.
63 Liu S H, Zeng G M, Niu Q Y, et al. Bioresource Technology, 2016, 224, 25.
64 Yang J B, Shen R S. Scientific and Technological Innovation, 2020(19), 35 (in Chinese).
杨家宝, 沈瑞杉. 科学技术创新, 2020(19), 35.
65 Yang C Y, Ho Y N, Makita R, et al. Science of the Total Environment, 2019, 712, 134504.
66 Cay S, Uyanik A, Engin M S. Soil Sediment Contamination, 2016, 25(3), 346.
67 Ni X, Li Y Q, Bai S, et al. Journal of Soil and Water Conservation. 2019, 33(3), 365.
倪幸, 李雅倩, 白珊, 等. 水土保持学报, 2019, 33(3), 365.
68 Long C, Wang Q, Zhou D, et al. Separation Purification Technology, 2011, 79(2), 246.
69 Yin X H, Ling Z P, Yang R Q, et al. Science of the Total Environment, 2021, 772, 145029.
70 Ma D G, Su M Z, Qian J J, et al. Separation and Purification Technology, 2020, 242, 116822.
71 Tang J, He J G, Tang H J, et al. Separation and Purification Technology, 2020, 246, 116918.
72 Zhou X P, Wang S L, Liu Y H, et al. Chemosphere, 2020, 247, 125965.
73 Gong X M, Huang D L, Liu Y G, et al. Science of the Total Environment, 2019, 666, 1126.
74 Mallhi A I, Chatha S A S, Hussain A I, et al. Plants-Basel, 2020, 9(3), 380.
75 Wu H W. Study on remediation of lead pollution by lead tolerant microorganisms and plants. Master's Thesis, Anhui Jianzhu University, China, 2021 (in Chinese).
吴海维. 耐铅微生物与植物联合修复环境中铅污染的研究. 硕士学位论文, 安徽建筑大学, 2021.
76 Zu Y Q, Lu X, Zhan F D, et al. Plant Physiology Journal, 2015, 51(10), 1538 (in Chinese).
祖艳群, 卢鑫, 湛方栋, 等. 植物生理学报, 2015, 51(10), 1538.
77 Bi R, Schlaak M, Siefert E, et al. Chemosphere, 2011, 83(3), 318.
78 Zhang S K, Gong X F, Shen Z Y, et al. Soil and Sediment Contamination, 2020, 29(6), 680.
79 Jain S, Khare P, Mishra D, et al. Journal of Hazardous Materials, 2020, 390, 121799.
80 Ghobadi R, Altaee A, Zhou J L, et al. Chemosphere, 2020, 252, 126607.
81 Shi G Y, Yan Y J, Yu Z Q, et al. Environmental Science Pollution Research, 2020, 20(30), 37668.
[1] 孟子毅, 李静, 蒯荣, 雷乾杰, 付旭东, 张荣, 胡圣飞, 刘清亭. 微生物矿化改性蒙脱土补强天然橡胶的效果[J]. 材料导报, 2022, 36(Z1): 21090113-6.
[2] 靳宇, 曲溪, 文陈, 舒文祥, 赵阔, 徐俊杰, 白晶莹, 崔庆新, 张立功. 空间微生物防护材料研究进展[J]. 材料导报, 2022, 36(22): 22050282-9.
[3] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[4] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[5] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[6] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[7] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[8] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[9] 邓呈敏, 程东海, 陈国财, 李东阳, 李文杰, 陈益平, 胡德安. 熔池形态对铝-铜激光焊接头组织和性能的影响[J]. 材料导报, 2021, 35(20): 20052-20056.
[10] 张峙, 李飞, 胡琳琪, 郑安应, 佘跃惠, 张文达. 油气工业生物及化学硫化氢清除剂研究进展[J]. 材料导报, 2021, 35(17): 17185-17189.
[11] 孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
[12] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[13] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[14] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[15] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed