Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 22120116-10    https://doi.org/10.11896/cldb.22120116
  城市固废材料高效处理及资源化利用 |
废弃混凝土再生微粉的基本问题及应用
肖建庄1,2,3,4,*, 叶涛华1, 隋同波5, 潘智生6
1 同济大学土木工程学院,上海 200092
2 同济大学土木工程防灾国家重点实验室,上海 200092
3 同济大学先进土木工程材料教育部重点实验室,上海 201804
4 同济大学工程结构性能演化与控制教育部重点实验室,上海 200092
5 中国中材国际工程股份有限公司,北京 100102
6 香港理工大学土木与环境工程学院,香港 999077
Fundamental Problems and Applications of Recycled Fine Powder Derived from Waste Concrete
XIAO Jianzhuang1,2,3,4,*, YE Taohua1, SUI Tongbo5, POON Chi Sun6
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
3 Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China
4 Key Laboratory of Performance Evolution and Control for Engineering Structures, Ministry of Education, Tongji University, Shanghai 200092, China
5 Sinoma International Engineering Co., Ltd., Beijing 100102, China
6 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
下载:  全 文 ( PDF ) ( 10909KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 废弃混凝土的资源化及再生骨料的研究与应用已取得显著突破。然而,废弃混凝土再生微粉的相关研究仍十分有限。本文重点讨论了再生微粉的加工制备、组分表征与改性处理,厘清了再生微粉的高组分离散性与低活性指数等问题的根本原因,并构思了一种新型制备路径,即在再生微粉的传统制备工艺中引入颗粒整形与强力磁选技术,再进行碳化改性。通过以超高浆体含量的碳化再生微粉作为输出,有望解决再生微粉的上述共性难题。此外,本文还讨论了再生微粉的低碳应用场景,如再生微粉硅酸盐水泥、3D打印再生砂浆以及全再生混凝土。再生微粉的深入研究与高品质应用对提高废弃混凝土的资源化率以及促进建筑业的绿色低碳发展具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖建庄
叶涛华
隋同波
潘智生
关键词:  废弃混凝土  再生微粉  组分表征  改性  低碳应用    
Abstract: Resourcing of waste concrete and its application as recycled aggregates have made significant progress. However, research on recycled fine powder derived from waste concrete is still limited. Therefore, this paper focuses on the preparation, characterization, and modification of recycled fine powder, clarifies the mechanisms for its fundamental problems such as high component discreteness (i.e., the number of mineral phase species) and low activity index, and proposes a novel solution, that is, the introduction of particle shaping and strong magnetic separation technologies into the preparation process of recycled fine powder, followed by carbonation modification. It is expected that the above-mentioned problems can be addressed by taking carbonated recycled fine powder with ultra-high paste content as the outlet. Furthermore, low-carbon application scenarios of recycled fine powder are discussed, including Portland-recycled fine powder cement, 3D-printed recycled mortar, and fully recycled concrete. Further research and value-added use of recycled fine powder are known to be significant for the improvement in resourcing ratio of waste concrete as well as for the green and low-carbon development in building industry.
Key words:  waste concrete    recycled fine powder    component characterization    modification    low-carbon application
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TU528  
基金资助: 国家杰出青年科学基金(51325802)
通讯作者:  *肖建庄,同济大学土木工程学院教授、博士研究生导师,国家杰出青年科学基金获得者,德国洪堡学者,国家重点研发计划首席科学家。主编国内第一本再生混凝土技术规程,获国家科技进步奖二等奖;出版学术专著5本,发表高水平学术论文400余篇,再生混凝土领域的论文成果量列全球首位(Scopus数据库),Web of Science的h指数56;连续9年入选Elsevier中国高被引学者榜单;连续3年入选全球前2%顶尖科学家榜单;兼任国际RILEM 再生混凝土结构行为与创新技术委员会 TC273-RAC 主席、中国土木工程学会混凝土及预应力混凝土分会常务理事。主要研究领域为再生混凝土材料与结构。jzx@tongji.edu.cn   
引用本文:    
肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
XIAO Jianzhuang, YE Taohua, SUI Tongbo, POON Chi Sun. Fundamental Problems and Applications of Recycled Fine Powder Derived from Waste Concrete. Materials Reports, 2023, 37(10): 22120116-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120116  或          http://www.mater-rep.com/CN/Y2023/V37/I10/22120116
1 IEA. Technology roadmap low-carbon transition in the cement industry, Paris, France, 2018.
2 Baki V A, Ke X Y, Heath A, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106962.
3 Luo Y, Wu Y H, Ma S H, et al. Environmental Science and Pollution Research, DOI:10.1007/s11356-020-08864-4.
4 Shi J G, Xu Y Z. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2006.03.011.
5 Xiao J Z, Xia B, Xiao X W, et al. Chinese Science Bulletin, DOI:10.1360/TB-2022-0055 (in Chinese).
肖建庄, 夏冰, 肖绪文, 等. 科学通报, DOI:10.1360/TB-2022-0055.
6 Xiao J Z, Zhang H H, Tang Y X, et al. Chinese Science Bulletin, DOI:10.1360/TB-2022-0521 (in Chinese).
肖建庄, 张航华, 唐宇翔, 等. 科学通报, DOI:10.1360/TB-2022-0521.
7 Xiao J Z, Poon C S, Zhao Y X, et al. Magazine of Concrete Research, DOI:10.1680/jmacr. 21. 00285.
8 Xiao J Z, Poon C S, Wang Y Y, et al. Magazine of Concrete Research, DOI:10.1680/jmacr.21.00253.
9 Xiao J Z. Recycled aggregate concrete structures, Springer, Germany, 2018.
10 Tang Q, Ma Z M, Wu H X, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2020.103807.
11 Xiao J Z, Xiao Y, Liu Y, et al. Structural Concrete, DOI:10.1002/suco.201900577.
12 Xiao J, Ma Z. Low carbon stabilization and solidification of hazardous wastes, Elsevier, Netherlands, 2022, pp.291.
13 Kaliyavaradhan S K, Ling T C, Mo K H. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.122358.
14 Ho H J, Iizuka A, Shibaya E. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.124785.
15 Xu L, Wang J J, Li K F, et al. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2022.106432.
16 Li L K, Liu Q, Huang T Y, et al. Separation and Purification Technology, DOI:10.1016/j.seppur.2022.121512.
17 Duan Z H, Poon C S. Materials & Design, DOI:10.1016/j.matdes.2014.01.044.
18 De-Juan M S, Gutierrez P A. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2008.04.012.
19 Kosmatka S, Wilson M. Design and control of concrete mixtures, Portland Cement Association, USA, 2011.
20 Liu X Y, Liu L, Lyu K, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.104175.
21 Duan Z H, Hou S D, Xiao J Z, et al. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2019.119865.
22 Song I H, Ryou J S. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2014.08.041.
23 Kim H S, Kim J M, Kim B. Journal of Material Cycles and Waste Ma-nagement, DOI:10.1007/s10163-017-0639-8.
24 Quattrone M, Angulo S C, John V M. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2014.06.003.
25 Pepe M, Toledo R D, Koenders E A B, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2014.06.084.
26 Carrico A, Bogas J A, Hu S, et al. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2021.127375.
27 Mosaberpanah M A, Eren O. Advances in Concrete Construction, DOI:10.12989/acc.2017.5.5.481.
28 Lothenbach B, Zajac M. Cement and Concrete Research, DOI:10.1016/j.cemconres.2019.105779.
29 Lothenbach B, Le-Saout G, Gallucci E, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2008.01.002.
30 Matschei T, Lothenbach B, Glasser F P. Cement and Concrete Research, DOI:10.1016/j.cemconres.2006.10.010.
31 Georget F, Lothenbach B, Wilson W, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2021.106692.
32 Bernard E, Zucha W J, Lothenbach B, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2021.106674.
33 Holmes N, Tyrer M, West R, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2021.126129.
34 BS EN 197-1. Cement:Composition, specification and conformity criteria for common cements, European Committee for Standardization, UK, 2011.
35 Macdowell J F. MRS Online Proceedings Library, DOI:10.1557/PROC-179-159.
36 Sun J F, Shen X D, Tan G, et al. Journal of Thermal Analysis and Calorimetry, DOI:10.1007/s10973-018-7578-z.
37 Dilnesa B Z, Lothenbach B, Renaudin G, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2014.02.001.
38 Okoronkwo M U, Glasser F P. Cement and Concrete Research, DOI:10.1016/j.cemconres.2016.01.013.
39 Linderoth O, Wadso L, Jansen D. Cement and Concrete Research, DOI:10.1016/j.cemconres.2020.106344.
40 Lothenbach B, Matshei T, Moschner G, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2007.08.017.
41 Fernandez A, Lothenbach B, Alonso M C, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.02.007.
42 Abdel-Rahman R O, Ojovan M I. Sustainability of life cycle management for nuclear cementation-based technologies, Elsevier, Netherlands, 2021, pp.125.
43 Damidot D, Glasser F P. Cement and Concrete Research, DOI:10.1016/0008-8846(94)00108-B.
44 Zunino F, Scrivener K. Cement and Concrete Research, 2022, DOI:10.1016/j.cemconres.2021.106693.
45 Juhasz A Z, Opoczky L. Mechanical Activation of minerals by grinding, Ellis Horwood Ltd, USA, 1990.
46 Balaz P. International Journal of Mineral Processing, DOI:10.1016/S0301-7516(03)00109-1.
47 Meng T, Hong Y P, Ying K J, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2021.104065.
48 Mucsi G, Papne N H, Ulsen C, et al. ACS Sustainable Chemistry & Engineering, DOI:10.1021/acssuschemeng.0c05838.
49 Balaz P. Mechanochemistry in nanoscience and minerals engineering, Springer, Germany, 2008.
50 Wang J J, Mu M L, Liu Y L. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.09.181.
51 Zhang L L, Ji Y S, Huang G D, et al. Construction and Building Mate-rials, DOI:10.1016/j.conbuildmat.2017.12.232.
52 Serpell R, Lopez M. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2015.08.003.
53 Carrico A, Bogas J A, Guedes M. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118873.
54 Serpell R, Zunino F. Cement and Concrete Research, DOI:10.1016/j.cemconres.2017.08.001.
55 Hall C, Barnes P, Billimore A D, et al. Journal of the Chemical Society, Faraday Transactions, DOI:10.1039/FT9969202125.
56 Rackley S A. Carbon capture and storage, Butterworth-Heinemann, UK 2017.
57 Meller N, Kyritsis K, Hall C. Journal of Solid State Chemistry, DOI:10.1016/j.jssc.2009.07.029.
58 Rivas-Mercury J M, Pena P, De-Aza A H, et al. Journal of the European Ceramic Society, DOI:10.1016/j.jeurceramsoc.2007.12. 038.
59 Song H, Jeong Y, Bae S, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.03.001.
60 Vagvolgyi V, Palmer S J, Kristof J, et al. Journal of Colloid and Interface Science, DOI:10.1016/j.jcis.2007.10.033
61 Valchevatraykova M L, Davidova N P, Weiss A H. Journal of Materials Science, DOI:10.1007/BF00367577.
62 Koehler A, Neubauer J, Goetz-Neunhoeffer F. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106972.
63 Zhu B Q, Song Y N, Li X C, et al. Materials Chemistry and Physics, DOI:10.1016/j.matchemphys.2015.01.060.
64 Xi F M, Davis S J, Ciais P, et al. Nature Geoscience, DOI:10.1038/ngeo2840.
65 Shen P L, Zhang Y Y, Jiang Y, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106733.
66 Shen P L, Sun Y J, Liu S H, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2021.106526.
67 Liu X, Feng P, Cai Y X, et al. Chemical Engineering Journal, DOI:10.1016/j.cej.2021.134243.
68 Zhu C H, Fang Y H, Wei H. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.10.113.
69 Wu Y Q, Mehdizadeh H, Mo K H, et al. Journal of Building Enginee-ring, DOI:10.1016/j.jobe.2022.104526.
70 Fang X L, Xuan D X, Zhan B J, et al. Journal of Cleaner Production, DOI:10.1016/j.jclepro.2020.125192.
71 Mehdizadeh H, Mo K H, Ling T C. Resources, Conservation and Recycling, DOI:10.1016/j.resconrec.2022.106695.
72 Shen P L, Lu J X, Zhang Y Y, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2022.106891.
73 Ouyang X W, Wang L Q, Xu S D, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2020.103809.
74 Hargis C W, Lothenbach B, Muller C J, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2017.03.003.
75 Zhang Y, Copuroglu O. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2022.104642.
76 Zhang Y, Liang M, Gan Y, et al. Cement and Concrete Composites, DOI:10.1016/j.cemconcomp.2022.104765.
77 Lu B, Shi C J, Zhang J K, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2018.07.159.
78 Xuan D X, Shui Z H. Fire and Materials, DOI:10.1002/fam.1067.
79 Li Z, Bian Y, Zhao J, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.105326.
80 Chen X, Li Y, Zhu Z Y, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.104511.
81 Chen X, Li Y, Bai H L, et al. Journal of Renewable Materials, DOI:10.32604/jrm.2021.015394.
82 Amin A F M S, Hasnat A, Khan A H, et al. Journal of Materials in Civil Engineering, DOI:10.1061/(ASCE)MT.1943-5533.0001472.
83 Yu K Q, Zhu W J, Ding Y, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2019.105813.
84 Likes L, Markandeya A, Haider M M, et al. Journal of Cleaner Production, 2022, DOI:10.1016/j.jclepro.2022.132651.
85 Zhu P, Mao X Q, Qu W J. Magazine of Concrete Research, DOI:10.1680/jmacr.18.00513.
86 Gao Y Q, Cui X Z, Lu N, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2021.103574.
87 Mao X Q, Qu W J, Zhu P, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.119049.
88 Lee H K, Lee K M, Kim B G. Magazine of Concrete Research, DOI:10.1680/macr.2003.55.6.507.
89 Nezerka V, Havlasek P, Trejbal J. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2020.118673.
90 Roussel N. Cement and Concrete Research, DOI:10.1016/j.cemconres.2018.04.005.
91 Panda B, Unluer C, Tan M J. Cement and Concrete Composites, 2018, DOI:10.1016/j.cemconcomp.2018.10.002.
92 Hou S D, Xiao J Z, Duan Z H, et al. Construction and Building Mate-rials, DOI:10.1016/j.conbuildmat.2021.125186.
93 Zhang H H, Xiao J Z, Duan Z H, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2022.128007.
94 Qian H, Hua S, Yue H, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.105236.
95 Zhang Y, Luo W, Wang J, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.03.078.
96 Xiao J Z, Ma X W, Liu Q, et al. Journal of Architecture and Civil Engineering, DOI:10.19815/j.jace.2020.11036 (in Chinese).
肖建庄, 马旭伟, 刘琼, 等. 建筑科学与工程学报, DOI:10.19815/j.jace.2020.11036.
97 Tang Y X, Xiao J Z, Zhang H H, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2022.126546.
98 Zhang H H, Xiao J Z, Tang Y X, et al. Cement and Concrete Compo-sites, DOI:10.1016/j.cemconcomp.2022.104527.
99 Xiao J Z, Lv Z Y, Duan Z H, et al. Journal of Building Engineering, DOI:10.1016/j.jobe.2022.104282.
[1] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[2] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[3] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[4] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[5] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[6] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[7] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[8] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[9] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[10] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[11] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[12] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[13] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[14] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[15] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed