Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9003-9008    https://doi.org/10.11896/cldb.21020050
  轻质合金 |
细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计
李道秀1, 韩梦霞1, 张将2, 彭银江2, 孙谦谦1,3, 刘桂亮1,3, 刘相法1,*
1 山东大学材料液固结构演变与加工教育部重点实验室,济南 250061
2 中国兵器科学研究院宁波分院,宁波 315103
3 山东吕美熔体技术有限公司,济南 250061
Microstructure Heredity and High Yield Strength Design of Fine Grained Al-Si-Mg Alloys
LI Daoxiu1, HAN Mengxia1, ZHANG Jiang2, PENG Yinjiang2, SUN Qianqian1,3, LIU Guiliang1,3, LIU Xiangfa1,*
1 Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061, China
2 Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315103, China
3 Shandong Al & Mg Melt Tech. Co., Ltd., Jinan 250061, China
下载:  全 文 ( PDF ) ( 12347KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 常规Al-Si-Mg合金铸锭(如A356铸棒)晶粒异常粗大,重熔后导致铸件存在微观缩松、组织成分不均匀、合金性能较差等问题,因此有效控制其晶粒尺寸至关重要。将细晶A356铝合金重熔,研究其组织遗传性,并通过电子探针(EPMA)表征形核质点、差式扫描量热(DSC)分析其凝固过程,揭示了其遗传机理,且利用该细晶(A356铝合金)设计了高强度的Al-Si-Mg合金。研究结果表明,细晶A356铝合金重熔后仍为细晶组织,其平均晶粒尺寸为74.9 μm。该种铝合金α-Al晶粒的中心处含有三元TiCB化合物粒子(TCB),合金重熔后即使经过长时间保温该粒子仍可稳定存在于熔体中,能够降低合金的形核过冷度,对α-Al起到形核作用,因此其细化效果得以保留,使细晶组织具有遗传性。此外,重熔后的细晶A356铝合金的抗拉强度为312.5 MPa,延伸率达到12.5%;在此基础上加入少量Mg以进一步提高其强度,设计得到的Al-Si-Mg合金的力学性能优异,特别是在延伸率为3.9%的情况下,Al-7Si-0.8Mg合金的抗拉强度和屈服强度分别高达386.4 MPa、352.9 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李道秀
韩梦霞
张将
彭银江
孙谦谦
刘桂亮
刘相法
关键词:  Al-Si-Mg合金  组织遗传性  晶粒细化  力学性能    
Abstract: The grain size of conventional Al-Si-Mg alloy ingot (such as A356 cast ingot) is abnormally coarse, which leads to the casting defects of microstructure shrinkage and porosity, uneven structure composition and poor performance after remelting. Therefore, it is very important to control its grain size effectively. In this work, a fine grained A356 alloy was remelted and its microstructure heredity was studied. The Al-Si-Mg alloy with high strength was designed by using the fine grain A356 aluminum alloy. To reveal the correlative heredity mechanism, the nucleation particle of the fine grained A356 aluminum alloy was characterized by electron microprobe (EPMA), and the solidification process was analyzed by differential scanning calorimetry (DSC). The results showed that the average grain size of the fine grained A356 aluminum alloy was 74.9 μm after remelting. It is found that the α-Al grains of the fine grained A356 aluminum alloy contains ternary compound TiCB particles (TCB). The particles are stable in the remelted A356 aluminum alloy, which are able to reduce the supercooling degree of the alloy. Therefore, even if remelted for a long time, it is qualified for α-Al nucleating and retain the high-efficiency refining effect. In addition, the tensile strength of the fine grain A356 aluminum alloy after remelting is 312.5 MPa, and the elongation reaches 12.5%. On this basis, a small amount of Mg was added to improve the strength. The designed Al-Si-Mg alloy has excellent mechanical property. The tensile strength and yield strength of Al-7Si-0.8Mg alloy are 386.4 MPa and 352.9 MPa, respectively, while the elongation remains at 3.9%.
Key words:  Al-Si-Mg alloys    microstructure heredity    grain refinement    mechanical property
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TG292  
基金资助: 国家自然科学基金(52071189);宁波市2025重大专项项目(2019B10099)
通讯作者:  liu@sdu.edu.cn   
作者简介:  李道秀,山东大学博士研究生,2016年9月至2019年4月在西北工业大学获得材料工程硕士学位,2019年至今在山东大学攻读博士学位。研究工作主要围绕铝合金,特别是铝硅系合金的细化及强化设计。
刘相法,山东大学教授,博士研究生导师。国家杰出青年科学基金获得者,泰山学者,山东省有突出贡献的中青年专家。主要从事液态金属团簇结构演变与调控理论、纳米晶种合金的研制与组织调控、耐热高强铝合金及其复合材料的研究工作。承担了包括国家973课题、国家杰出青年基金、国家自然科学基金重点及面上项目等国家及省部级项目20余项;获山东省技术发明一等奖1项,山东省科技进步一等奖1项,国家技术发明四等奖1项,省部级二等奖5项,授权国家发明专利28项,并产业化18项,发表SCI收录论文200余篇,被引2 500余次,出版专著2部。
引用本文:    
李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
LI Daoxiu, HAN Mengxia, ZHANG Jiang, PENG Yinjiang, SUN Qianqian, LIU Guiliang, LIU Xiangfa. Microstructure Heredity and High Yield Strength Design of Fine Grained Al-Si-Mg Alloys. Materials Reports, 2021, 35(9): 9003-9008.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020050  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9003
1 Niu L Q, Cao M, Liang Z L, et al. Materials Science and Engineering: A,2020,789,139612.
2 Wang M J, Hu K Q, Liu G L, et al. Journal of Alloys and Compounds,2020,814,152217.
3 Xia X C, Zhao Q F, Peng Y Y, et al. Journal of Alloys and Compounds,2020,818,153370.
4 López V H, Scoles A, Kennedy A R. Materials Science and Engineering: A,2003,356(1-2),316.
5 Ding H M, Liu X F. Transactions of Nonferrous Metals Society of China,2011,21(7),1465.
6 Li Y, Hu B, Liu B, et al. Acta Materialia,2020,187,51.
7 Qiu D, Taylor J A, Zhang M X, et al. Acta Materialia,2007,55(4),1447.
8 Xu Y, Casari D, Du Q, et al. Acta Materialia,2017,140,224.
9 Fan Z, Wang Y, Zhang Y, et al. Acta Materialia,2015,84,292.
10 Birol Y. Journal of Alloys and Compounds,2012,513,150.
11 Bolzoni L, Hari Babu N. Journal of Materials Research and Technology,2019,8(6),5631.
12 Chen Z N, Kang H J, Fan G H, et al. Acta Materialia,2016,120,168.
13 Li P, Liu S, Zhang L, et al. Materials & Design,2013,47,522.
14 Xu J, Li Y, Ma K, et al. Scripta Materialia,2020,187,142.
15 Li Q, Qiu F, Dong B X, et al. Materials Science and Engineering: A,2020,798,140247.
16 Kang J, Su R, Wu D Y, et al. Journal of Alloys and Compounds,2019,796,267.
17 Gao J L. Light Metals,1985(11),55(in Chinese).
高晶丽.轻金属,1985(11),55.
18 Zhang J S. Principle of liquid metal forming, Chemical Industry Press, China,2011(in Chinese).
张金山.金属液态成型原理,化学工业出版社,2011.
19 StJohn D H, Qian M, Easton M A, et al. Acta Materialia,2011,59(12),4907.
20 StJohn D H, Easton M A, Qian M, et al. Metallurgical and Materials Transactions A,2012,44(7),2935.
21 Tsai Y C, Chou C Y, Lee S L, et al. Journal of Alloys and Compounds,2009,487(1-2),157.
[1] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[2] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[3] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[4] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[5] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[6] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[7] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[8] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[9] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[10] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[11] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[12] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[13] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[14] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[15] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed