Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 24010120-7    https://doi.org/10.11896/cldb.24010120
  无机非金属及其复合材料 |
助磨剂影响矿物浮选的作用机理及研究进展
白鹏飞1,2, 杨聪仁2, 马昆林1,2,*, 丁亚蓉1, 詹启贤1, 孟庆胤3, 陈荣健3, 范佳志3
1 中南大学土木工程学院,长沙 410083
2 中南大学资源加工与生物工程学院,长沙 410083
3 伊春鹿鸣矿业有限公司,黑龙江 伊春 153000
Mechanism and Research Progress of the Effect of Grinding Aids on Mineral Flotation
BAI Pengfei1,2, YANG Congren2, MA Kunlin1,2,*, DING Yarong1, ZHAN Qixian1, MENG Qingyin3, CHEN Rongjian3, FAN Jiazhi3
1 School of Civil Engineering, Central South University, Changsha 410083, China
2 School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China
3 Yichun Luming Mining Co., Ltd., Yichun 153000, Heilongjiang, China
下载:  全 文 ( PDF ) ( 7411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磨矿-浮选是一个复杂的物理化学反应体系,矿粒的表面性质和矿浆性质直接决定了矿物浮选的效果。为了提高磨矿效率、节能降耗,常在磨矿过程中添加具有助磨效果的化学试剂,但是助磨剂的掺入改变了矿物的表面性质和矿浆性质,对后续的浮选过程会产生不同的影响。助磨剂会对矿物的粒度、表面性质(晶体结构、表面形貌、表面电位和表面能等)和矿浆性质(黏度和pH值等)产生重要影响;从浮选动力学的角度来讲,助磨剂对上述因素的影响最终会导致矿粒在气泡表面上的碰撞与粘附概率发生变化,其作用机理有待进一步深入研究。本文基于已有文献资料,梳理了助磨剂影响矿物浮选和浮选动力学的主要作用机制及最新研究进展,以期为助磨剂在磨矿中的应用和浮选工艺的改进提供研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白鹏飞
杨聪仁
马昆林
丁亚蓉
詹启贤
孟庆胤
陈荣健
范佳志
关键词:  浮选  助磨剂  浮选动力学  作用机理    
Abstract: Flotation is a complex physical and chemical process, the physical and chemical properties of mineral surface and pulp properties are the decisive factors affecting flotation. The addition of grinding aids in the grinding process can improve the grinding efficiency, which is conducive to energy saving, but the addition of grinding aids changes the physical and chemical properties of mineral surface and pulp properties, so it will have different effects on the subsequent flotation process. Grindingaids can have important effects on mineral particle size, surface properties (crystal structure, surface morphology, surface potential and surface energy, etc.) and pulp properties (viscosity and pH, etc.). From the perspective of flotation dynamics, the above factors affected by grinding aids will eventually change the collision and adhesion probability of mineral particles on the surface of bubbles, and its mechanism needs to be further studied. Based on the existing literature, this paper reviews the latest research progress of the effect of grinding aids on mineral flotation and flotation kinetics and its mechanism, in order to provide research basis for the application of grinding aids in grinding and the improvement of flotation process.
Key words:  flotation    grinding aids    flotation kinetics    action mechanism
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TD952  
基金资助: 中铁资源科技项目(LM(2023)-F-055);中南大学大型仪器设备共享基金(CSUZC202118)
通讯作者:  *马昆林,中南大学土木工程学院,教授。目前主要从事固废资源化利用、矿物加工等相关交叉学科领域的研究和工程应用。Makunlin@csu.edu.cn   
作者简介:  白鹏飞,2022年6月于中南大学获得工学学士学位。现为中南大学土木工程学院硕士研究生,在马昆林教授的指导下进行研究。目前主要从事助磨剂对矿物加工效果影响等方面的研究。
引用本文:    
白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
BAI Pengfei, YANG Congren, MA Kunlin, DING Yarong, ZHAN Qixian, MENG Qingyin, CHEN Rongjian, FAN Jiazhi. Mechanism and Research Progress of the Effect of Grinding Aids on Mineral Flotation. Materials Reports, 2025, 39(3): 24010120-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010120  或          http://www.mater-rep.com/CN/Y2025/V39/I3/24010120
1 Prziwara P, Breitungfaes S, Kwade A. Minerals Engineering, 2019(144), 106030.
2 Tan Y H, Lin S, Qu J, et al. Applied Surface Science, 2021, 535, 147688.
3 Katsioti P E, Tsakiridis P, Giannato S, et al. Construction and Building Materials, 2009, 23(5), 1954.
4 Zhang Y Q, He Q, Yang C Y M, et al. Journal of Metal Mine, 2023(2), 67(in Chinese).
张怡晴, 何琦, 杨陈仪敏, 等. 金属矿山, 2023(2), 67.
5 Song Z G, Chen K K, Cui Q, et al. Nonferrous Metals Engineering, 2023, 13(3), 87(in Chinese).
宋振国, 陈康康, 崔强, 等. 有色金属工程, 2023, 13(3), 87.
6 Li H X, Zhao J F, Huang Y Y, et al. Journal of Environmental Management, 2016, 184(3), 545.
7 Uchida K, Asoo N, Komizu H, et al. Journal of the Society of Powder Technology, 1990, 27(3), 165.
8 Yang H M, Qiu G Z. Journal of Central South University of Technology (Natural Science Edition), 2000(5), 400(in Chinese).
杨华明, 邱冠周. 中南工业大学学报(自然科学版), 2000(5), 400.
9 Gao M W, Forssberg E. International Journal of Mineral Processing, 1993, 37(1-2), 45.
10 He M Z, Foessber E. International Journal of Mineral Processing, 2007, 84(1-4), 240.
11 Lu D F, Wei S L. Journal of South China University of Technology (Natural Science Edition), 1989(1), 88(in Chinese).
卢迪芬, 魏诗榴. 华南理工大学学报(自然科学版), 1989(1), 88.
12 Zhu X B, Zhong L Y, Zhang Z F. Research and application of cement grinding AIDS , China Building Materials Industry Press, China, 2005, pp. 3(in Chinese).
朱宪伯, 吕忠亚, 张正峯. 水泥助磨剂研究与应用论文集, 中国建材工业出版社, 2005, pp. 3.
13 Sun K, Nguyen C V, Nguyen N N, et al. Colloid Interface Sci, 2022, 309, 102775.
14 Xie L, Wang J, Lu Q, et al. Colloid Interface Sci, 2021, 295, 102491.
15 Xiao Y, Han H S, Sun W, et al. The research progress and development trend of metal mines , 2020(6), 9(in Chinese).
肖遥, 韩海生, 孙伟, 等. 金属矿山, 2020(6), 9.
16 Zhou W B, Zhu Z Q, Wang Y G, et al. Metal Mines, 2023(1), 228 (in Chinese).
周文波, 朱照强, 王永刚, 等. 金属矿山, 2023(1), 228.
17 Chipakwe V, Karlkvist T, Rosenkranz J, et al. Separation and Purification Technology, 2023, 305, 122530.
18 Prziwara K, Breitung-Faes S, Kwade A. Powder Technol, 2018, 29, 416.
19 Cayirli S. Powder Technol, 2022, 33, 103446.
20 Qi L J, Pei J C, Zhou K C, et al. Geological Science and Technology Information, 2001(1), 64 (in Chinese).
亓利剑, 裴景成, 周开灿, 等. 地质科技情报, 2001(1), 64.
21 Wang L S, Gao Z Y, Tang H H, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107671.
22 Lan L H, Chen J H, Li Y Q, et al. Chinese Journal of Nonferrous Metals, 2012, 22(9), 2626(in Chinese).
蓝丽红, 陈建华, 李玉琼, 等. 中国有色金属学报, 2012, 22(9), 2626.
23 Chen J H, Zeng X Q, Chen Y, et al. Chinese Journal of Nonferrous Metals, 2010, 20(4), 765.
陈建华, 曾小钦, 陈晔, 等. 中国有色金属学报, 2010, 20 (4), 765.
24 Xi P, Liu W L, Han Y H, et al. Coal Journal, 2016, 41(4), 997 (in Chinese).
郗朋, 刘文礼, 韩永华, 等. 煤炭学报, 2016, 41(4), 997.
25 Tong Z, Liu L, Yuan Z, et al. Minerals Engineering, 2021, 169, 106959.
26 Ahmed M M. Miner. Process, 2010, 94, 180.
27 Wang Z H, Deng S Z, Yu F J, et al. China Mining Industry, 2012, 21(2), 96 (in Chinese).
王泽红, 邓善芝, 于福家, 等. 中国矿业, 2012, 21(2), 96.
28 Mao Y, Liu W G, Chen X D, et al. Physicochemical and Engineering Aspects, 2023, 668, 131449.
29 Gao Y S, Gao Z Y, Sun W. Chinese Journal of Nonferrous Metals, 2017, 27 (4), 859 (in Chinese).
高跃升, 高志勇, 孙伟. 中国有色金属学报, 2017, 27(4), 859.
30 Yan X H, Wei L B, Meng Q, et al. Water Process Engineering, 2021, 42, 102153.
31 Mao Y, Wang Z H, Tian P C, et al. Mineral Resources Protection and Utilization, 2020, 40(6), 162 (in Chinese).
毛勇, 王泽红, 田鹏程, 等. 矿产保护与利用, 2020, 40(6), 162.
32 Deng S Z, Wang Z H, Han Y X. Modern Mining, 2013, 29(9), 101 (in Chinese).
邓善芝, 王泽红, 韩跃新. 现代矿业, 2013, 29(9), 101.
33 Dadastine R R, Prieve D C, White L R. Journal of Colloid and Interface Science, 2002, 249(1), 78.
34 Wang Z H, Cai S, Deng S Z, et al. Metal Mine, 2010(6), 80 (in Chinese).
王泽红, 蔡珊, 邓善芝, 等. 金属矿山, 2010(6), 80.
35 Chen W, Chen F F, Bu X Z, et al. Minerals Engineering, 2019, 138, 257.
36 Mao Y, Wang Z H, Tian P C, et al. China Mining Industry, 2021, 30(8), 117 (in Chinese).
毛勇, 王泽红, 田鹏程, 等. 中国矿业, 2021, 30(8), 117.
37 Cao Z, Zhang Y H, Sun C Y, et al. Chinese Journal of Nonferrous Metals, 2014, 24(2), 506 (in Chinese).
曹钊, 张亚辉, 孙传尧, 等. 中国有色金属学报, 2014, 24(2), 506.
38 Li B, Che D C, Guon J Y, et al. Metal Mine, 2023, (3), 135 (in Chinese).
栗褒, 车道昌, 郭建英, 等. 金属矿山, 2023, (3), 135.
39 Kang Y M, Fan G X, Hao H Q, et al. Journal of Central South University (Natural Science Edition), 2023, 54(10), 3787 (in Chinese).
康雅敏, 范桂侠, 郝海青, 等. 中南大学学报(自然科学版), 2023, 54(10), 3787.
40 Mao Y, Wang Z H, Tian P C, et al. Journal of China University of Mining, 2022, 51(2), 383 (in Chinese).
毛勇, 王泽红, 田鹏程, 等. 中国矿业大学学报, 2022, 51(2), 383.
41 Guo R, Liu D, Guo Z Q, et al. Silicate Bulletin, 2019, 38(11), 3432 (in Chinese).
郭锐, 刘丹, 郭志强, 等. 硅酸盐通报, 2019, 38(11), 3432.
42 Liu Z, Liu G S, Yu J G. Journal of Physical Chemistry, 2012, 28(1), 201 (in Chinese).
刘臻, 刘够生, 于建国. 物理化学学报, 2012, 28(1), 201.
43 Wang Y B, Dang W B, Li H, et al. Journal of China University of Mining, 2020, 49(3), 602 (in Chinese).
王宇斌, 党炜犇, 李慧, 等. 中国矿业大学学报, 2020, 49(3), 602.
44 He X T, Wang J, Cui W Y, et al. Mining and Metallurgy Engineering, 2015, 35(3), 55 (in Chinese).
何晓太, 王杰, 崔伟勇, 等. 矿冶工程, 2015, 35(3), 55.
45 Wang J Z, Yin W Z, Sun Z M. Chinese Journal of Nonferrous Metals, 2018, 28(8), 1645 (in Chinese).
王纪镇, 印万忠, 孙忠梅. 中国有色金属学报, 2018, 28(8), 1645.
46 Wang Y B, Wen K, Wang S, et al. Chemical Engineering Journal of Universities, 2018, 32(6), 1444 (in Chinese).
王宇斌, 文堪, 王森, 等. 高校化学工程学报, 2018, 32(6), 1444.
47 Chen C. Effect and mechanism of inorganic anions on flotation behavior of three typical calcium-containing salts. Master's Thesis, Central South University, China, 2012 (in Chinese).
陈臣. 无机阴离子对三种典型含钙盐类矿物浮选行为影响及作用机制. 硕士学位论文, 中南大学, 2012.
48 Ma Q, Li Y B, Li W Q, et al. Metal Mines, 2021(11), 74 (in Chinese).
马强, 李育彪, 李万青, 等. 金属矿山, 2021(11), 74.
49 Sun C Y, Shi S X, Han D F, et al. Journal of China University of Mining, 2022, 51(3), 411(in Chinese).
孙传尧, 史帅星, 韩登峰, 等. 中国矿业大学学报, 2022, 51(3), 411.
50 Zunigah G. Mining Bulletin of the National Society of Mining, 1935, 47, 83.
51 Klimpelr R. Johannesburg:Council for Mineral Technology, 1984.
52 Gao E X, Zhang C, Li Y P, et al. Metal Mines, 2022(9), 100 (in Chinese).
高恩霞, 张春, 李悦鹏, 等. 金属矿山, 2022(9), 100.
53 Arbiter N. Flotation rates and flotation efficiency[EB/OL]. 1951.
54 Klimpelr R. Chemical Engineering, 1984, 91, 18.
55 Zhang H, Liu J, Cao Y, et al. Powder Technology, 2013, 246, 658.
56 Wang Z Y, Si J W, Somg Z G, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125337.
57 Chen Z M. Nonferrous Metals (Smelting Section), 1978(10), 28(in Chinese).
陈子鸣. 有色金属(冶炼部分), 1978(10), 28.
58 Yalcin E, Kelebek S. International Journal of Mineral Processing, 2011, 98(1-2), 48.
59 Ma Y Z, Li Y H, Tang P Y, et al. Coal Technology, 2022, 41(7), 235(in Chinese).
马业真, 李钰涵, 唐佩瑶, 等. 煤炭技术, 2022, 41(7), 235.
60 Ma G X, Xia W C, Xie G Y. Journal of Cleaner Production, 2018, 195, 470.
61 Rahimi M, Dehghani F, Rezai B, et al. International Journal of Minerals, 2012, 19(4), 284.
62 Zhao X M, Kong D H, Li Y P, et al. Precious Metals, 2022, 43(2), 51 (in Chinese).
赵新苗, 孔德浩, 李悦鹏, 等. 贵金属, 2022, 43(2), 51.
[1] 马昆林, 孟维琦, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 再生微粉性能激活研究及应用进展[J]. 材料导报, 2024, 38(10): 22100042-13.
[2] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[3] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[4] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[5] 彭晶晶, 刘静, 张弦, 成林, 吴开明, 张涛. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 20090294-8.
[6] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[7] 郑伟豪, 何娟, 伍勇华, 宋学锋, 桑国臣. 活性MgO对碱矿渣水泥收缩性能的影响[J]. 材料导报, 2022, 36(10): 21040175-8.
[8] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[9] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[10] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[11] 胡丙升, 王宏, 宋俊超, 魏亮, 岳世松, 贾金鑫, 史长亮, 杨蕾. 煤系高岭土中残留炭的分离回收与材料化利用研究[J]. 材料导报, 2020, 34(24): 24068-24073.
[12] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[13] 唐晓博, 孙振平, 刘毅. 三乙醇胺助磨剂对水泥与聚羧酸系减水剂适应性的影响及其机理[J]. 《材料导报》期刊社, 2018, 32(4): 641-645.
[14] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[15] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed