A Numerical and Experimental Study of the Thermostatic Laser Welding Process of SnBiAg Lead-free Solder
FENG Chao1,2, YANG Zifan1,2, LIU Yueli1,3,*
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 2 State Key Laboratory of Silicate Materials for Architectures, Wuhan 430070, China 3 Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, Hainan, China
Abstract: This work investigates the thermostatic welding process of SnBiAg lead-free solder through establishing a three-dimensional transient numerical model by employing the finite element method, considering the influence of the choice of heat source, and reveals the relationship between laser process parameters and microstructure. The numerical simulation results demonstrate that a heat source with a rectangular-truncated-pyramid-like distribution is suitable for thermostatic laser welding processes. Under different parameters, significant temperature variations are observed in solder joints at different positions. The experimental results indicate that the welding temperature and time have a substantial influence on the microstructure of the solder. The phase distribution in the solder may be made more uniform by appropriately increasing the welding temperature and extending the welding time. The optimal process parameters for the thermostatic laser welding of SnBiAg are determined as a wel-ding temperature of 210 ℃ and a welding time of 15 s.
冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
FENG Chao, YANG Zifan, LIU Yueli. A Numerical and Experimental Study of the Thermostatic Laser Welding Process of SnBiAg Lead-free Solder. Materials Reports, 2025, 39(3): 24010216-6.
1 Zhang P, Xue S, Wang J. Materials & Design, 2020, 192, 108726. 2 Chen C M, Chen L T, Lin Y S. Journal of Electronic Materials, 2007, 36, 168. 3 Deeying J, Asawarungsaengkul K, Chutima P. Optics & Laser Technology, 2018, 98, 158. 4 Tatsumi H, Kaneshita S, Kida Y, et al. Journal of Manufacturing Processes, 2022, 82, 700. 5 Celikin M, Maalekian M, Pekguleryuz M. Journal of Electronic Materials, 2018, 47, 5842. 6 Bharath Krupa Teja M, Sharma A. Journal of Materials Science, 2022, 57, 8597. 7 Ma H, Suhling J C. Journal of Materials Science, 2009, 44, 1141. 8 Li S, Wang X, Liu Z, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 9076. 9 Liu Y, Tu K N. Materials Today Advances, 2020, 8, 100115. 10 Ma H, Zhao B, Wu G, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 8167. 11 Liu Y, Ren B, Zhou M, et al. Applied Physics A, 2020, 126, 1. 12 Shen J, Wu C, Li S. Journal of Materials Science:Materials in Electronics, 2012, 23, 156. 13 Zhang P, Xue S, Wang J, et al. Applied Sciences, 2019, 9(10), 2044. 14 Zhang S, Liu Y, Zhang H, et al. Welding International. 2021, 35(1-3), 16. 15 Yang J, Zhang Q, Song Z. Journal of Electronic Materials, 2021, 50, 283. 16 Hu F Q, Zhang Q K, Jiang J J, et al. Materials Letters, 2018, 214, 142. 17 Zhang X P, Yu C B, Zhang Y P, et al. Journal of Materials Processing Technology, 2007, 192, 539. 18 Yang F, Zhang L, Liu Z Q, et al. Advances in Materials Science and Engineering, 2016, 195, 1. 19 Jiang N, Zhang L, Gao L L, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(18), 22731. 20 Liu Y, Chang J, Xue Y. Journal of Materials Science:Materials in Electronics, 2022, 33(10), 8270. 21 Huang H, Chen B, Hu X, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(19), 15586. 22 Xu R, Liu Y, Zhang H, et al. Journal of Electronic Materials, 2019, 48, 1758. 23 Zeng Z, Li X, Wang R, et al. International Journal of Numerical Modelling:Electronic Networks, Devices and Fields, 2015, 28(2), 175. 24 Lee D H, Jeong M S, Yoon J W. Journal of Materials Science:Materials in Electronics, 2022, 33(10), 7983. 25 Genanu M, Hadian F, Owen R, et al. Journal of Electronic Materials, 2021, 50, 209. 26 Xie X, Huang W, Zhou J, er al. Journal of Laser Applications, 2022, 34(2), 022007. 27 Lazov L, Teirumnieks E, Draganov I, et al. Laser Physics, 2021, 31(6), 066001. 28 Yang Z, Li L, Chen W, et al. Materials Chemistry and Physics, 2021, 273, 125046. 29 Lou M, Cai W, Huang J, et al. Journal of Manufacturing Processes, 2020, 60, 1. 30 Zeng Z, Li X B, Li L, et al. Materials Science and Technology, 2011, 27(11), 1686. 31 Hu Y, Yang H. Journal of Physics:Conference Series, 2021, 2026(1), 012056. 32 Wang L, Wei Y, Chen J, et al. International Journal of Heat and Mass Transfer, 2018, 123, 826. 33 Santos Magalhães E, Santos Paes L E, Pereira M, et al. International Communications in Heat and Mass Transfer, 2018, 92, 112. 34 Goldak J A, Akhlaghi M. Computational Welding Mechanics, Springer, US, 2005.