Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 24010216-6    https://doi.org/10.11896/cldb.24010216
  金属与金属基复合材料 |
SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究
冯超1,2, 杨子帆1,2, 刘曰利1,3,*
1 武汉理工大学材料科学与工程学院,武汉 430070
2 硅酸盐建筑材料国家重点实验室,武汉 430070
3 武汉理工大学三亚科教创新园,海南 三亚 572024
A Numerical and Experimental Study of the Thermostatic Laser Welding Process of SnBiAg Lead-free Solder
FENG Chao1,2, YANG Zifan1,2, LIU Yueli1,3,*
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 State Key Laboratory of Silicate Materials for Architectures, Wuhan 430070, China
3 Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, Hainan, China
下载:  全 文 ( PDF ) ( 30237KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用有限元分析方法建立SnBiAg无铅焊料恒温激光焊接过程的三维瞬态数值模型,研究热源选择对仿真结果的影响,并揭示激光工艺参数与钎料微观结构之间的关系。数值模拟结果表明,具有矩形截锥分布的热源更适用于恒温激光焊接的数值模拟;在不同激光焊接参数下,焊点的温度分布呈现出显著变化的趋势。实验结果表明,焊接温度和时间对焊料的微观结构具有重要影响,进一步验证了数值模型的准确性。此外,通过适当提高焊接温度和延长焊接时间,可以使得焊料中的各组分分布更加均匀。此研究为进一步优化恒温激光焊接工艺提供一种新的指导思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯超
杨子帆
刘曰利
关键词:  有限元分析  热分布仿真  激光焊接  SnBiAg无铅焊料  微观结构    
Abstract: This work investigates the thermostatic welding process of SnBiAg lead-free solder through establishing a three-dimensional transient numerical model by employing the finite element method, considering the influence of the choice of heat source, and reveals the relationship between laser process parameters and microstructure. The numerical simulation results demonstrate that a heat source with a rectangular-truncated-pyramid-like distribution is suitable for thermostatic laser welding processes. Under different parameters, significant temperature variations are observed in solder joints at different positions. The experimental results indicate that the welding temperature and time have a substantial influence on the microstructure of the solder. The phase distribution in the solder may be made more uniform by appropriately increasing the welding temperature and extending the welding time. The optimal process parameters for the thermostatic laser welding of SnBiAg are determined as a wel-ding temperature of 210 ℃ and a welding time of 15 s.
Key words:  finite element analysis    thermal-distribution simulation    laser welding    SnBiAg solder    microstructure
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TG425  
基金资助: 国家自然科学基金(12174298);三亚科技创新工程(2022KJCX85)
通讯作者:  *刘曰利,武汉理工大学硅酸盐建筑材料国家重点实验研究员、博士研究生导师。2001年武汉大学物理科学与技术学院应用物理学专业本科毕业,2006年武汉大学物理科学与技术学院材料物理与化学专业硕博连读毕业后到武汉理工大学大学工作至今。目前主要从事新材料、激光焊接等方面的研究工作。lylliuwhut@whut.edu.cn   
作者简介:  冯超,2021年6月于武汉理工大学获得工学学士学位。现为武汉理工大学材料科学与工程学院的硕士研究生,在刘曰利教授的指导下进行研究。目前主要研究领域为激光焊接数值模拟与实验。
引用本文:    
冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
FENG Chao, YANG Zifan, LIU Yueli. A Numerical and Experimental Study of the Thermostatic Laser Welding Process of SnBiAg Lead-free Solder. Materials Reports, 2025, 39(3): 24010216-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010216  或          http://www.mater-rep.com/CN/Y2025/V39/I3/24010216
1 Zhang P, Xue S, Wang J. Materials & Design, 2020, 192, 108726.
2 Chen C M, Chen L T, Lin Y S. Journal of Electronic Materials, 2007, 36, 168.
3 Deeying J, Asawarungsaengkul K, Chutima P. Optics & Laser Technology, 2018, 98, 158.
4 Tatsumi H, Kaneshita S, Kida Y, et al. Journal of Manufacturing Processes, 2022, 82, 700.
5 Celikin M, Maalekian M, Pekguleryuz M. Journal of Electronic Materials, 2018, 47, 5842.
6 Bharath Krupa Teja M, Sharma A. Journal of Materials Science, 2022, 57, 8597.
7 Ma H, Suhling J C. Journal of Materials Science, 2009, 44, 1141.
8 Li S, Wang X, Liu Z, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 9076.
9 Liu Y, Tu K N. Materials Today Advances, 2020, 8, 100115.
10 Ma H, Zhao B, Wu G, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 8167.
11 Liu Y, Ren B, Zhou M, et al. Applied Physics A, 2020, 126, 1.
12 Shen J, Wu C, Li S. Journal of Materials Science:Materials in Electronics, 2012, 23, 156.
13 Zhang P, Xue S, Wang J, et al. Applied Sciences, 2019, 9(10), 2044.
14 Zhang S, Liu Y, Zhang H, et al. Welding International. 2021, 35(1-3), 16.
15 Yang J, Zhang Q, Song Z. Journal of Electronic Materials, 2021, 50, 283.
16 Hu F Q, Zhang Q K, Jiang J J, et al. Materials Letters, 2018, 214, 142.
17 Zhang X P, Yu C B, Zhang Y P, et al. Journal of Materials Processing Technology, 2007, 192, 539.
18 Yang F, Zhang L, Liu Z Q, et al. Advances in Materials Science and Engineering, 2016, 195, 1.
19 Jiang N, Zhang L, Gao L L, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(18), 22731.
20 Liu Y, Chang J, Xue Y. Journal of Materials Science:Materials in Electronics, 2022, 33(10), 8270.
21 Huang H, Chen B, Hu X, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(19), 15586.
22 Xu R, Liu Y, Zhang H, et al. Journal of Electronic Materials, 2019, 48, 1758.
23 Zeng Z, Li X, Wang R, et al. International Journal of Numerical Modelling:Electronic Networks, Devices and Fields, 2015, 28(2), 175.
24 Lee D H, Jeong M S, Yoon J W. Journal of Materials Science:Materials in Electronics, 2022, 33(10), 7983.
25 Genanu M, Hadian F, Owen R, et al. Journal of Electronic Materials, 2021, 50, 209.
26 Xie X, Huang W, Zhou J, er al. Journal of Laser Applications, 2022, 34(2), 022007.
27 Lazov L, Teirumnieks E, Draganov I, et al. Laser Physics, 2021, 31(6), 066001.
28 Yang Z, Li L, Chen W, et al. Materials Chemistry and Physics, 2021, 273, 125046.
29 Lou M, Cai W, Huang J, et al. Journal of Manufacturing Processes, 2020, 60, 1.
30 Zeng Z, Li X B, Li L, et al. Materials Science and Technology, 2011, 27(11), 1686.
31 Hu Y, Yang H. Journal of Physics:Conference Series, 2021, 2026(1), 012056.
32 Wang L, Wei Y, Chen J, et al. International Journal of Heat and Mass Transfer, 2018, 123, 826.
33 Santos Magalhães E, Santos Paes L E, Pereira M, et al. International Communications in Heat and Mass Transfer, 2018, 92, 112.
34 Goldak J A, Akhlaghi M. Computational Welding Mechanics, Springer, US, 2005.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 彭进, 许红巧, 王星星, 龙伟民, 张永振, 于晓凯. 激光深熔焊匙孔及焊接飞溅行为的数值模拟[J]. 材料导报, 2025, 39(3): 22030166-5.
[4] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[5] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[6] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[7] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[8] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[9] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[10] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[11] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[12] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[13] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[14] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[15] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed