Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23110103-6    https://doi.org/10.11896/cldb.23110103
  先进有色金属材料加工及性能调控 |
W元素在新型镍基粉末高温合金中的强化作用
贾建1,2, 罗俊鹏3, 张浩鹏1,2, 闫婷1,2, 侯琼1,2, 张义文1,2,*
1 钢铁研究总院有限公司高温材料研究所,北京 100081
2 北京钢研高纳科技股份有限公司,北京 100081
3 中国航发南方工业有限公司,湖南 株洲 412002
Strengthening Effect of W Element in New Nickel-based Powder Metallurgy Superalloys
JIA Jian1,2, LUO Junpeng3, ZHANG Haopeng1,2, YAN Ting1,2, HOU Qiong1,2, ZHANG Yiwen1,2,*
1 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2 Gaona Aero Material Co.,Ltd., Beijing 100081, China
3 Aecc South Industry Company Limited, Zhuzhou 412002, Hunan, China
下载:  全 文 ( PDF ) ( 17907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过真空感应熔炼(VIM)棒料+电极感应熔炼氩气雾化(EIGA)制粉+热等静压(HIP)成形+热处理(HT)工艺制备三种W含量(质量分数4.1%、6.1%和8.1%)的新型镍基粉末高温合金实验锭坯。以此锭坯为对象,结合金属材料相图计算及材料性能模拟软件JMatPro 6.5计算,利用SEM、EBSD和XRD分析W含量对热处理态锭坯显微组织(如晶粒尺寸、退火孪晶、γ′强化相及错配度)的影响,测试分析不同温度下合金的拉伸性能,通过经验公式量化分析各强化机制对合金室温屈服强度的贡献情况。结果表明,随着W含量增加,γ基体层错能明显降低,热处理态退火孪晶界Σ3数量增多;W促使晶内一次γ′强化相由立方状加速粗化为固态枝晶状,对γ′总量和二次、三次γ′的影响不大;W进入γ基体产生晶格畸变的程度大于γ′强化相,使得γ′/γ错配度呈下降趋势;W有助于提高室温和650~800 ℃拉伸强度,但略微降低塑性;W主要起固溶强化、γ/γ′共格应变强化和晶界强化作用,其中固溶强化贡献相对最低,固溶强化时以强化γ基体为主,γ基体固溶强化和γ/γ′共格应变强化效果随W含量增加而减弱,W含量为6.1%时晶界强化效果最大;固溶强化、γ/γ′共格应变强化和晶界强化贡献值总和不足室温屈服强度实测值的50%,合金以γ′相沉淀强化为主,测试值和计算值较为吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾建
罗俊鹏
张浩鹏
闫婷
侯琼
张义文
关键词:  粉末高温合金  退火孪晶  错配度  层错能  固溶强化  共格应变强化  晶界强化  沉淀强化    
Abstract: Three experimental high-strength Ni-based PM superalloy ingots with different W contents (4.1wt%, 6.1wt%, and 8.1wt%) were prepared by the process of vacuum induction melting (VIM) + electrode induction melting gas atomization (EIGA) + hot isostatic pressing (HIP) + heat treatment (HT). Combined with the software JMatPro 6.5 and SEM, EBSD, and XRD, the effects of W content on the grain size, annealing twin boundaries, the γ′ phase and the lattice mismatch were analyzed, and the effect of W content on the tensile properties at different temperatures were also calculated and studied. The results indicated that the stacking fault energy of the γ matrix decreased significantly with the increase of W content, resulting in the increase of Σ3 annealing twin boundaries;W transformed the shape of primary γ′ from cuboid to solid state dendrite, but had little impact on the total amount of γ′ phase and secondary and tertiary γ′ phases; the degree of lattice distortion caused by W entering γ phase is greater than that of γ′ phase, resulting in a decrease of the γ′/γ lattice mismatch; W contributed to improving the tensile strength at room temperature and 650—800 ℃, but slightly reduced the ductility. W had better strength above 750 ℃, and it was widely added in the fourth generation PM superalloys. W mainly played the role of solid solution strengthening, γ/γ′ coherent strain strengthening, and grain boundary strengthening. Among them, the contribution of solid solution strengthening was relatively low and W mainly strengthened the γ matrix. The effect of γ matrix solution strengthening and γ/γ′ coherent strain strengthening decreased with the increase of W content, and the grain boundary strengthening effect was the largest when W content was 6.1%. The total contribution of solid solution strengthening, γ/γ′ coherent strain strengthening and grain boundary strengthening was less than 50% of the measured yield strength at room temperature, which indicated that the alloy was mainly strengthened by the γ′ phase.
Key words:  powder metallurgy superalloy    annealing twin boundaries    lattice mismatch    stacking fault energy    solid solution strengthening    coherent strain strengthening    grain boundary strengthening    precipitation strengthening
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TF803.21  
基金资助: 国家重点研发计划(2022YFB3404502)
通讯作者:  * 张义文,北京钢研高纳科技股份有限公司(钢铁研究总院高温材料研究所)正高级工程师、博士研究生导师和粉末高温合金首席专家。1986年东北工学院(现东北大学)金属材料及热处理专业本科毕业,1989年北京科技大学金属材料及热处理专业硕士毕业后到北京钢研高纳科技股份有限公司(钢铁研究总院高温材料研究所)工作至今,2013年北京科技大学冶金物理化学专业博士毕业。目前主要从事粉末高温合金方面的研究工作。发表论文200余篇,出版粉末高温合金方面的专著3篇,研究成果荣获国防科技进步三等奖。yiwen64@cisri.cn   
作者简介:  贾建,2003年7月、2008年3月分别于哈尔滨工程大学和钢铁研究总院获得工学学士学位和硕士学位。现为北京钢研高纳科技股份有限公司(钢铁研究总院高温材料研究所)粉末高温合金研发人员,主要研究领域为新型粉末高温合金的成分设计与工艺优化、热等静压扩散连接制备双合金整体叶盘等。
引用本文:    
贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
JIA Jian, LUO Junpeng, ZHANG Haopeng, YAN Ting, HOU Qiong, ZHANG Yiwen. Strengthening Effect of W Element in New Nickel-based Powder Metallurgy Superalloys. Materials Reports, 2024, 38(15): 23110103-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110103  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23110103
1 Smythe J. Advanced Materials and Processes, 2008, 166(11), 52.
2 Zhang Y W, Liu J T, Jia J, et al. Powder Metallurgy Industry, 2022, 32(6), 150 (in Chinese).
张义文, 刘建涛, 贾建, 等. 粉末冶金工业, 2022, 32(6), 150.
3 Zhang Y W, Liu J T, Jia J, et al. Powder Metallurgy Industry, 2022, 32(1), 1 (in Chinese).
张义文, 刘建涛, 贾建, 等. 粉末冶金工业, 2022, 32(1), 1.
4 Bai J M, Liu J T, Jia J, et al. Acta Metallurgica Sinica, 2023, 59(9), 1230 (in Chinese).
白佳铭, 刘建涛, 贾建, 等. 金属学报, 2023, 59(9), 1230.
5 Guo J T. Materials science and engineering for superalloys(1st), Science Press, China, 2008 (in Chinese).
郭建亭. 高温合金材料学(1版), 科学出版社, 2008.
6 Wang L, Yang G, Qian T C. Journal of Iron and Steel Research, 2014, 26(2), 41 (in Chinese).
王鲁, 杨钢, 钱天才. 钢铁研究学报, 2014, 26(2), 41.
7 Tian S G, Xia D, Li T, et al. Journal of Aeronautical Materials, 2008, 28(4), 12 (in Chinese).
田素贵, 夏丹, 李唐, 等. 航空材料学报, 2008, 28(4), 12.
8 Wang L, Yang G, Lei T, et al. Chinese Journal of Rare Metals, 2016, 40(2), 117 (in Chinese).
汪力, 杨钢, 雷霆, 等. 稀有金属, 2016, 40(2), 117.
9 Sun Y J, Shang Y, Sun L. Hot Working Technology, 2013, 42(18), 53 (in Chinese).
孙跃军, 尚勇, 孙雷. 热加工工艺, 2013, 42(18), 53.
10 Johnson W R, Barrett C R, Nix W D. Metallurgical and Materials Tran-sactions B, 1972, 3(4), 963.
11 Yang N S, Wei Y H, Fu H Z, et al. Acta Metallurgica Sinica, 1981, 17(1), 44 (in Chinese).
杨枬森, 魏育环, 傅宏镇, 等. 金属学报, 1981, 17(1), 44.
12 Yang N S, Wei Y H, Fu H Z, et al. Iron and Steel, 1984, 19(11), 28 (in Chinese).
杨枬森, 魏育环, 傅宏镇, 等. 钢铁, 1984, 19(11), 28.
13 Meng Q E, Xi X R. Acta Metallurgica Sinica, 1987, 23(4), A344 (in Chinese).
孟庆恩, 郗秀荣. 金属学报, 1987, 23(4), A344.
14 Yu X F, Tian S G, Yang J H. Journal of Materials and Metallurgy, 2004, 3(4), 294 (in Chinese).
于兴福, 田素贵, 杨景红. 材料与冶金学报, 2004, 3(4), 294.
15 Yu X F, Tian S G, Du H Q, et al. Rare Metal Materials and Engineering, 2007, 36(12), 2148 (in Chinese).
于兴福, 田素贵, 杜洪强, 等. 稀有金属材料与工程, 2007, 36(12), 2148.
16 Darolia R, Lahrman D F, Field R D. In:Proceedings of the Sixth International Symposium on Superalloys. Warrendale, PA, USA, 1988, pp.255.
17 Tian S G, Du H Q, Wang C T, et al. Journal of Aeronautical Materials, 2006, 26(3), 16 (in Chinese).
田素贵, 杜洪强, 王春涛, 等. 航空材料学报, 2006, 26(3), 16.
18 Fan L H, Li J L, Sun J D, et al. Acta Metallurgica Sinica, 2023, https://kns. cnki. net/kcms/detail/21. 1139. tg. 20230315. 1312. 136. html (in Chinese).
凡莉花, 李金临, 孙九栋, 等.金属学报, https://kns. cnki. net/kcms/detail/21. 1139. tg. 20230315. 1312. 136. html.
19 Wang B, Zhang J, Pan X J, et al. Acta Metallurgica Sinica, 2017, 53(3), 298 (in Chinese).
王博, 张军, 潘雪娇, 等. 金属学报, 2017, 53(3), 298.
20 Zhao H B, Feng W, Zhou T J. Special Casting & Nonferrous Alloys, 2017, 37(5), 482 (in Chinese).
赵会彬, 冯微, 周同金. 特种铸造及有色合金, 2017, 37(5), 482.
21 Watanabe T. Journal of Materials Science, 2011, 46(12), 4095.
22 Shi Y, Zhang Y Y, Liu F, et al. Hot Working Technology, 2020, 49(16), 32 (in Chinese).
师瑀, 张莹莹, 刘峰, 等. 热加工工艺, 2020, 49(16), 32.
23 Yu X X, Wang C Y. Acta Materialia, 2010, 57(19), 5914.
24 Shang S L, Zacherl C L, Fang H Z, et al. Journal of Physics:Condensed Matter, 2012, 24(50), 505403.
25 Liu S L, Ye X X, Jiang L, et al. Materials Science and Engineering: A, 2016, 655, 269.
26 Fan X, Guo Z, Wang X, et al. Materials Characterization, 2018, 139, 382.
27 Van Sluytman J S, Pollock T M. Acta Materialia, 2012, 60(4), 1771.
28 Zhang J C, Lu F, Zhang C, et al. Vacuum, 2022, 197, 110863.
29 Sudbrack C K, Isheim D, Noebe R D, et al. Microscopy and Microanalysis, 2004, 10(3), 355.
30 Sudbrack C K, Ziebell T D, Noebe R D, et al. Acta Materialia, 2008, 56(3), 448.
31 Goodfellow A J, Galindo-Nava E I, Schwalbe C, et al. Materials and Design, 2019, 173, 107760.
32 Chen Y, Fang Q H, Luo S H, et al. International Journal of Plasticity, 2022, 155, 103333.
33 Nemoto M, Tian W, Sano T. Journal de Physique III, 1991, 1, 1099.
34 Roth H A, Davis C L, Thomson R C. Metallurgical and Materials Transactions A, 1997, 28(6), 1329.
35 Gypen L A, Deruyttere A. Journal of Materials Science, 1977, 12(5), 1028.
36 Galindo-Nava E I, Connor L D, Rae C M F. Acta Materialia, 2015, 98, 377.
37 Wang Q, Li Z, Pang S J, et al. Entropy, 2018, 20, 878.
38 Bhowal P R, Wright E F, Raymond E L. Metallurgical and Materials Transactions A, 1990, 21(6), 1709.
39 Tan L M, Li Y P, Deng W K, et al. Journal of Alloys and Compounds, 2019, 804, 322.
[1] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[2] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[3] 韩基鸿, 张洋, 马亚玺, 刘力源, 杨忠波, 张中武. 纳米孪晶强化合金制备技术与力学性能研究进展[J]. 材料导报, 2022, 36(24): 21050108-14.
[4] 白曦, 方伟, 常若斌, 于浩洋, 闫皎辉, 殷福星. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 20070199-7.
[5] 陈瑞润, 陈秀刚, 高雪峰, 秦刚, 宋强, 崔洪芝. 原位自生碳化物增强CoCrFeNi高熵合金的显微组织与力学性能[J]. 材料导报, 2022, 36(14): 22050073-6.
[6] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[7] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[8] 文成, 莫湾湾, 田玉琬, 王贵, 胡杰珍. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081-17089.
[9] 宋扬, 刘丽华, 张中武. 钛微合金化低碳钢的研究进展[J]. 材料导报, 2021, 35(15): 15175-15182.
[10] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[11] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[12] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[13] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[14] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[15] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed