Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030100-9    https://doi.org/10.11896/cldb.23030100
  无机非金属及其复合材料 |
三维光热蒸发器结构设计理念研究进展
孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原*
大连工业大学纺织与材料工程学院,辽宁 大连 116034
Research Progress in Structural Design Concept of Three-dimensional Photothermal Evaporator
SUN Qimeng, SUN Miao, QI Yanfei, JIN Guoqing, ZHOU Xinghai, LYU Lihua, WEI Chunyan, GAO Yuan*
School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
下载:  全 文 ( PDF ) ( 8760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能驱动界面蒸发过程因清洁环保、无污染的特点而受到广泛关注,利用太阳能光热蒸发器进行海水淡化可有效缓解地球表面淡水资源匮乏的困境。经过数十年发展,光热蒸发过程及机理逐渐明晰,且已开发出多种材料及形式的蒸发器。其中,三维(3D)光热蒸发器由于存在3D空腔结构,不仅可以允许光的多次反射促进吸收,其较大的侧面面积也可改善热管理并促进水蒸发,具有广阔的应用前景。本文介绍了3D光热蒸发器结构设计及在海水淡化应用中的研究进展,从光吸收、热管理、耐盐结晶等方面,总结了已开发的3D蒸发器结构对蒸发速率和蒸发效率的影响,最后总结了当前光热蒸发器研究及实际应用过程中存在的问题,并展望了未来光热蒸发技术的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙启萌
孙淼
祁艳菲
金国庆
周兴海
吕丽华
魏春艳
高原
关键词:  太阳能  3D光热蒸发器  光热转化  海水淡化    
Abstract: Solar-driven interface evaporation process has attracted wide spread attention due to its environmentally friendly and non-pollution characteristics. Seawater desalination using solar photothermal evaporator can effectively alleviate the plight of the shortage of freshwater resources on the earth's surface. After decades of development, the process and mechanism of photothermal evaporation have gradually become clear, and a variety of materials and shapes of evaporators have been developed. Due to the 3D cavity structure, the three-dimensional (3D) photothermal evaporator can not only allow multiple reflections of light to promote absorption, but also improve heat management and promote water evaporation with its large side area, which has broad application prospects. This paper briefly describes 3D photothermal evaporator and its research progress in the application of seawater desalination, and summarizes the effects of different 3D evaporator structures on the evaporation rate and efficiency in terms of light absorption, heat management, salt crystallization, etc. Finally, the problems in the current research and practical application of photothermal evaporator are summarized, and the development trend of photothermal evaporation technology in the future is predicted.
Key words:  solar energy    3D photothermal evaporator    photothermal conversion    seawater desalination
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TB33  
基金资助: 辽宁省教育厅基本科研项目(LJKQZ20222286)
通讯作者:  * 高原,大连工业大学纺织与材料工程学院讲师、博士研究生导师。2015年鲁东大学化学与材料科学学院本科毕业,2020年天津工业大学材料科学与工程专业博士毕业后到大连工业大学工作至今。目前主要从事三维光热蒸发器设计及开发、聚苯硫醚多孔膜结构调控与应用等方面的研究工作。发表论文10余篇,包括Chemical Engineering Journal、Journal of Membrane Science、Separation and Purification Technology、Desalination等。gaoyuan@dlpu.edu.cn   
作者简介:  孙启萌,2021年6月于大连工业大学获得工学学士学位。现为大连工业大学纺织与材料工程学院硕士研究生,在高原老师的指导下进行研究。目前主要研究领域为三维光热蒸发器设计及开发。
引用本文:    
孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
SUN Qimeng, SUN Miao, QI Yanfei, JIN Guoqing, ZHOU Xinghai, LYU Lihua, WEI Chunyan, GAO Yuan. Research Progress in Structural Design Concept of Three-dimensional Photothermal Evaporator. Materials Reports, 2024, 38(14): 23030100-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030100  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030100
1 Wang T Y, Huang H B, Li H L, et al. New Carbon Materials, 2021, 36(4),683.
2 Han X H, Ding S Q, Hu H Y, et al. Journal of Materials Chemistry A, 2022, 10(36),18509.
3 Huang Q C, Liang X C, Yan C Y, et al. Applied Energy, 2021, 283,116361.
4 Li Z T, Xu X T, Sheng X R, et al. ACS Nano, 2021, 15(8),12535.
5 Tao P, George N, Song C Y, et al. Nature Energy, 2018, 3(12), 1031.
6 Gao Y, Sun Q M, Chen Y, et al. Chemical Engineering Journal, 2023, 455, 140500.
7 Ridha D, Laila N, Van-Duong D, et al. Chemical Engineering Journal, 2022, 431, 134024.
8 Kwanghyun K, Sunyoung Y, Cheolwon A, et al. ACS Applied Materials & Interfaces, 2018, 10(18), 15602.
9 Ma X L, Zhao J, Wang R, et al. Applied Energy, 2022, 328,120203.
10 Zhu G L, Xu J J, Zhao W L, et al. ACS Applied Materials & Interfaces, 2016, 8(46),31716.
11 Wang X, Liu Q C, Wu S Y, et al. Advanced Materials, 2019, 31(19),1807716.
12 Tu C, Cai W F, Chen X, et al. Small, 2019, 15(37),1902070.
13 Li X P, Li X F, Li H G, et al. Advanced Functional Materials, 2021, 32(15),2110636.
14 Lin Z X, Wu T T, Jia B X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637,128272.
15 Wang L F, Liu C J, Wang H, et al. ACS Applied Materials & Interfaces, 2020, 12(21),24328.
16 Wang Z X, Wu X C, Dong J M, et al. Chemical Engineering Journal, 2022, 427,130905.
17 Cao N N, Lu S T, Yao R, et al. Chemical Engineering Journal, 2020, 397,125522.
18 Shi L, Yusuf S, Zhuo S F, et al. Nano Energy, 2019, 60, 222.
19 Shi Y, Li R Y, Jin Y, et al. Joule, 2018, 2(6),1171.
20 Wang Y C, Sun X Y, Tao S Y. Environmental Science & Technology, 2020, 54(24),16240.
21 Wang Y C, Wang C Z, Song X J, et al. Journal of Materials Chemistry A, 2018, 6(21),9874.
22 Yang Y D, Sui Y J, Cai Z S, et al. Global Challenges, 2019, 3(9),1900004.
23 Zhu J Y, Liu J R, Liu J C, et al. Desalination, 2023, 548,116275.
24 Wang J T, Hong J L. Applied Thermal Engineering, 2020, 178,115636.
25 Sun S H, Shi C C, Kuang Y D, et al. Water Research, 2022, 226,119279.
26 Nahian Al Subri Ivan, Ahmed Mortuza Saleque, Safayet Ahmed, et al. ACS Applied Materials & Interfaces, 2022, 14(6),7936.
27 Gao M M, Zhu L L, Connor K P, et al. Energy & Environmental Science, 2019, 12(3), 841.
28 Huang H, Zhao L, Yu Q, et al. ACS Applied Materials & Interfaces, 2020, 12(9),11204
29 Liu F Q, Xia L M, Zhang L Y, et al. ACS Applied Materials & Interfaces, 2021, 13(46),55299.
30 Fang Q L, Li T T, Lin H B, et al. ACS Applied Energy Materials, 2019, 2(6), 4354.
31 Hao D D, Yang Y D, Xu B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8),10789.
32 Hu T, Li L X, Yang Y F, et al. Journal of Materials Chemistry A, 2020, 8(29),14736.
33 Liu Z X, Zhong Q P, Wu N Y, et al. Desalination, 2021, 509,115072.
34 Daniel P S, Jack L P, Wu X, et al. ACS Applied Materials & Interfaces, 2020, 12(13),15279.
35 Chen Y, Qiu H S, Li X F, et al. Applied Surface Science, 2022, 582,152483.
36 Zhang Q Y, Yang X H, Deng H L, et al. Desalination, 2022, 526,115544.
37 Zhang W, Chang Q, Xue C R, et al. Solar RRL, 2021,5,2100133.
38 Lei Z W, Sun X T, Zhu S F, et al. Nano-Micro Letters, 2021, 14(1), 10.
39 Xia Y, Hou Q F, Hasan J, et al. Energy & Environmental Science, 2019, 12(6),1840.
40 Wang Z X, Huang H, Huang S Q, et al. Reactive & Functional Polymers, 2022, 175,105270.
41 Wu P, Wu X, Wang Y D, et al. Water Research, 2022, 212,118099.
42 Su L F, Hu Y Q, Ma Z Q, et al. Solar Energy Materials and Solar Cells, 2020, 210,110484.
43 Ni G, Li G, Svetlana V B, et al. Nature Energy, 2016, 1(9),16126.
44 Yu Z, Cheng S A, Li C C, et al. ACS Applied Materials & Interfaces, 2019, 11(35),32038.
45 Wang Z X, Han M C, He F, et al. Nano Energy, 2020, 74,104886.
46 Song H M, Liu Y H, Liu Z J, et al. Advanced Science, 2018, 5(8),1800222.
47 Li X Q, Li J L, Lu J Y, et al. Joule, 2018, 2(7),1331.
48 Wang Y D, Wu X, Yang X F, et al. Nano Energy, 2020, 78,105269.
49 Li W, Tian X H, Li X F, et al. Journal of Colloid and Interface Science, 2022, 606(1),748.
50 Li Z T, Zhang J, Zang S H, et al. Nano Energy, 2020, 73,104834.
51 Wang Z X, Wu X C, He F, et al. Advanced Functional Materials, 2021, 31(22),2011114.
52 Li W, Li X F, Chang W, et al. Nano Research, 2020, 13(11),3048.
53 Li W, Tian X H, Li X F, et al. Journal of Materials Chemistry A, 2021, 9(26), 14859.
54 Gao H, Bing N C, Bao Z J, et al. Chemical Engineering Journal, 2023, 454,140362.
55 Liang Y Z, Guo J C, Li J J, et al. Advanced Sustainable Systems, 2022, 6(10),2200236.
56 Shi Y Y, Zhang C F, Wang Y H, et al. Desalination, 2021, 507,115038.
57 Guo Y H, Zhou X Y, Zhao F, et al. ACS Nano, 2019, 13(7),7913.
58 Zhao F, Zhou X Y, Shi Y, et al. Nature Nanotechnology, 2018, 13(6),489.
59 Hou X T, Sun H Y, Dong F Y, et al. Chemosphere, 2023, 315, 137732.
60 Li J Y, Jing Y J, Xing G Y, et al. Journal of Materials Chemistry A, 2022, 10(36),18470.
61 Xia Y X, Kang Y, Wang Z Y, et al. Journal of Materials Chemistry A, 2021, 9(11), 6612.
62 Xu K Y, Wang C B, Li Z T, et al. Advanced Functional Materials, 2020, 31(8),2007855.
63 Muhammad S I, Wang X, Adil A, et al. Carbon, 2021, 176, 313.
64 Luo S S, Li Z L, Cui X M, et al. Chemical Engineering Journal, 2023, 454,140286.
65 Wang J L, Wang W K, Feng L, et al. Solar Energy Materials and Solar Cells, 2021, 231,111329.
66 Wang M, Xu G R, An Z H, et al. Separation and Purification Technology, 2022, 287, 120534.
67 Ai S, Li T J, Chen Y Z, et al. Chemical Engineering Journal, 2022, 431,134333.
68 Hu Z C, Ren L P, Zhang Q, et al. Materials Letters, 2023, 333, 133619.
69 Xu D, Zhong H, Li M G, et al. Carbon, 2023, 204,231.
70 Xu W C, Hu X Z, Zhuang S D, et al. Advanced Energy Materials, 2018, 8(14),1702884.
71 Zhu M W, Li Y J, Chen F J, et al. Advanced Energy Materials, 2018, 8(4),1701028.
72 Zhang Q, Hu R, Chen Y L, et al. Applied Energy, 2020, 276,115545.
73 Zhang C, Shi Y, Shi L, et al. Natural Communication, 2021, 12(1),998.
74 Peng H Y, Wang D, Fu S H. Chemical Engineering Journal, 2021, 426, 131818.
75 Wu L, Dong Z C, Cai Z R, et al. Natural Communication, 2020, 11(1),521.
76 Wu X, Wang Y D, Wu P, et al. Advanced Functional Materials, 2021, 31(34),2102618.
[1] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[2] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[3] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[6] 李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
[7] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[8] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[9] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[10] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[11] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[12] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[13] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[14] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[15] 左夏华, 宋立健, 关昌峰, 阎华, 杨卫民, 安瑛. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 22050317-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed