Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22100210-11    https://doi.org/10.11896/cldb.22100210
  高分子与聚合物基复合材料 |
有机电子传输材料在反式钙钛矿太阳能电池中的研究现状
王耀武, 王彬彬*
河南理工大学材料科学与工程学院,河南 焦作 454003
Research Status of Organic Electron Transport Materials in Inverted Perovskite Solar Cells
WANG Yaowu, WANG Binbin*
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 17819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,反式结构的钙钛矿太阳能电池凭借制备工艺简单、可低温成膜、迟滞效应低、适合与传统太阳能电池结合制备叠层器件等优点,受到了人们广泛的关注,经过几年的发展,反式钙钛矿太阳能电池的光电转化效率已从3.9%提升到25.37%。其中电子传输层作为钙钛矿太阳能电池的重要组成部分,在提取和运输载流子、阻挡空穴、调节界面能级结构和抑制电荷复合等方面起着关键性的作用。一些有机材料(富勒烯及其衍生物、苝二酰亚胺、萘二酰亚胺等)凭借容易合成和纯化、能级可调、电子迁移率高、溶解性好、化学/热稳定性良好等优势,已经广泛应用于反式钙钛矿太阳能电池。本文主要介绍了不同有机电子传输材料在反式钙钛矿太阳能电池中的研究现状,还介绍了电子传输层掺杂和界面修饰两种提升器件性能的改性手段,旨在为开发全新的有机电子传输材料提供基础性的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王耀武
王彬彬
关键词:  反式钙钛矿太阳能电池  工作机理  有机电子传输材料    
Abstract: Due to their simple manufacturing processes, low-temperature film-forming technology, negligible hysteresis, and suitability for preparation of multi-stack devices with conventional solar cells, inverted perovskite solar cells (PSCs) have been extensively researched. In the past se-veral years, the power conversion efficiency of inverted PSCs has increased from 3.9% to 25.37%. As a major component of PSCs, the electron transport layer (ETL) plays a critical role in extracting and transporting carriers, blocking holes, modifying energy levels, and preventing charge recombination. Because of their ease of synthesis and purification, high electron mobility, good solubility, and excellent chemical/thermal stability, organic materials such as fullerene and its derivatives, perylene diimide, and naphthalimide have been most commonly used in the ETLs of inverted PSCs. This review mainly introduces the research status of organic ETLs, modification methods for improving device performance by ETL doping, and interface modification in inverted PSCs, thus providing basic theoretical guidelines for developing new organic ETLs.
Key words:  inverted perovskite solar cell    working mechanism    organic electron transport material
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TM914.4  
  O649  
基金资助: 国家自然科学基金(42002164;U1804156); 河南省自然科学基金(202300410171);河南省科技攻关计划项目(222102240080);河南理工大学青年骨干教师资助计划(2022XQG-13)
通讯作者:  *王彬彬,博士,河南理工大学材料科学与工程学院副教授、硕士研究生导师。2004年毕业于东北师范大学获得学士学位,2007年毕业于东北师范大学获得硕士学位,2013年毕业于吉林大学获得博士学位,2014—2016年,中国科学院化学研究所从事博士后工作研究,2016至今,河南理工大学材料科学与工程学院教师。目前主要从事有机-无机杂化钙钛矿太阳能电池方面的研究。在国际期刊Journal of Materials Chemistry AElectrochimica Acta 等发表论文10余篇,出版专著1部。wangbb@hpu.edu.cn   
作者简介:  王耀武,2021年毕业于河南城建学院获得工学学士学位,现为河南理工大学材料科学与工程学院硕士研究生,在王彬彬副教授的指导下进行学习研究。目前主要的研究领域为有机-无机杂化钙钛矿太阳能电池。
引用本文:    
王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
WANG Yaowu, WANG Binbin. Research Status of Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Materials Reports, 2024, 38(10): 22100210-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100210  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22100210
1 Yang Y, Luo Y, Ma S P, et al. Progress in Chemistry, 2021(0-2), 281(in Chinese).
杨英, 罗媛, 马书鹏, 等, 化学进展, 2021(0-2), 281
2 Hua Z H, Wu B, Wang C R, et al. Act Materiae Compositae Sinca, 2022, 39(0-5), 1870(in Chinese) .
华紫辉, 吴波, 王春儒, 等. 复合材料学报, 2022, 39(5), 1870.
3 Lian J R, Lu B, Niu F F, et al. Small Methods, 2018, 2(10), 1800082.
4 Zhang Y H, Li Y, et al. Rare Metals, 2021, 40(11), 2993.
5 Yang Y, Luo Y, Guo X Y, et al. Progress in Chemistry, 2021, 33(2), 281.
6 Chen R, Wang W, Bu T, et al. Acta Physico-Chimica Sinica, 2019, 35(4), 401.
7 Zhu L H, Shang X N, Lei K X, et al. Chinese Journal of Luminescence, 2019(5), 481, (in chinese)
朱立华, 商雪妮, 雷凯翔, 等. 发光学报, 2019 (5), 481.
8 Said A A, Xie J, Zhang Q C, et al. Nano·Micro Small, 2019, 15(27), 1900854.
9 Mombeshora E T, Muchuweni E, et al. Nanoscale Advances, 2022, 4(9), 2057.
10 Chen C L, Zhang S S, Wu S H, et al. RSC Advances, 2018, 7(57), 35819.
11 Lin X S, Cui D Y, Luo X H, et al. Energy & Environmental Science, 2020, 13(11), 3823.
12 Jeng J Y, Chiang Y F, Lee M H, et al. Advanced Materials, 2013, 25(27), 3727.
13 Min H, Lee D, Kim J, et al. Nature, 2021, 598(7881), 444.
14 Jiang Q, Tong J H, Xian Y M, et al. Nature, 2022, 611(7935), 278.
15 Jia Z Z, Zhong H, Shen J L, et al. Chemical Engineering Journal, 2022, 446(2), 136897.
16 Liu D Y, Wang Q, Elinki M, et al. ACS Omega, 2018, 3(6), 63339.
17 Lin H S, Jeon I, Xiang R, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 39590.
18 Mehdi H, Selmi O, Mhamid A, et al. Journal of Materials Science-Materials in Electronices, 2022, 33(8), 5351.
19 Cho S, Pandey P, Park J, et al. ACS Applied Energy Materials, 2022, 5(1), 387.
20 Younes E M, Gurung A, Bahrami B, et al. Organic Electronics, 2022, 100, 6391.
21 Li R B, Zhen J M, Wan Y Y, et al. Journal of Materials Chemistry A, 2020, 8(7), 3872.
22 Zhou W R, Jia L B, Chen M Q, et al. Advanced Functional Materials, 2022, 32(34), 2201374.
23 Li D Y, Kong W G, Gao F L, et al. ACS Applied Materials & Interfaces, 2020, 12(17), 20103.
24 Chiang S E, Lin P C, Wu J R, et al. Nanotechnology, 2022, 34(1), 015401.
25 Lakhdar N, Hima A. Optical Materials, 2020, 99, 109517.
26 Zhong Y, Hufnagel M, Li C, et al. Advanced Functional Materials, 2020, 30(23), 1908920.
27 Karuppuswamy P, Hanmandlu C, Boopathi K M, et al. Solar Energy Materials and Solar Cells, 2017, 169, 78.
28 Zheng M M, Miao Y W, Syed A A, et al. Journal of Energy Chemistry, 2021, 56, 374.
29 Perez G S, Dasgupat S, Robertson N, et al. Journal of Materials Chemistry A, 2022, 10(20), 11046.
30 Yum J H, Moon S J, Yao L, et al. ACS Applied Energy Materials, 2019, 2(9), 6616.
31 Yum J H, Moon S J, Yao L, et al. ACS Applied Energy Materials, 2019, 2(9), 6616.
32 Wang H X, Zhang M M, Cheng M, et al. Chemical Engineering Journal, 2022, 438, 135410.
33 Chen S S, Dai X Z, Xu S, et al. Science, 2021, 373(6557), 902.
34 Wu T H, Qin Z Z, Wang Y B, et al. Nano-Micro Letters, 2021, 13, 1.
35 Ge C W, Wu W T, Hu L, et al. Organic Electronics, 2018, 61, 113.
36 Shaikh D B, Said A A, Bhosale R S, et al. Asian Journal of Organic Chemistry, 2018, 7(11), 2294.
37 Zhao D B, Zhu Z L, Kuo M Y, et al. Angeandte Chemie-international Edition, 2016, 55(31), 8999.
38 Zhao D, Zhu Z, Kuo M Y, et al. Angewandte Chemie, 2016, 128(31), 9145.
39 Elnaggar M M, Frolova L A, Gordeeva A M, et al. Synthetic Metals, 2022, 286, 117028.
40 Li F Z, Deng X, Qi F, et al. Journal of the American Chemical Society, 2021, 142(47), 20134.
41 Mehdi H, Mhamdi A, Bouazizi A, et al. Physica E: Low-Dimensional Systems & Nanostructuers, 2020, 119, 114000.
42 Kim J Y, Lee J W, Shin H, et al. Chemical Reviews, 2020, 120(15), 7867.
43 Zhang Q C, Shaikh D B, Said A A, et al. ACS Applied Materials & Interfaces, 2019, 11(47), 44487.
44 Said A A, Wagalgave S M, Xie J, et al. Journal of Solid State Chemistry, 2019, 270, 51.
45 Liu W B, Shaikh D B, Zhang Q C, et al. Chemistry-An Asian Journal, 2020, 15(1), 112.
46 Wang N, Zhao K X, Ding T, et al. Advanced Energy Materials, 2017, 7(18), 1700522.
47 Zhu X M, Sun J, Yuan S, et al. New Journal of Chemistry, 2019, 43(18), 7130.
48 Degani M, An Q Z, Cho C, et al. Science Advances, 2021, 7(49), eabj7930.
49 Chin Y C, Daboczi M, Henderson C, et al. ACS Energy Letters, 2022, 7(2), 560.
50 Liu D Y, Wang Q, Chen P, et al. ACS Omega, 2018, 3(6), 6339.
51 Li X, Fu S, Zhang W, et al. Science Advance, 2020, 6(51), eabd1508.
52 Wang J T, Li J H, Zhou Y C, et al. Journal of the American Chemical Society, 2021, 143(20), 7759.
53 Yang J B, Cao Q, Wang T, et al. Energy & Environmental Science, 2022, 15(5), 2154.
54 Li X D, Zhang W X, Guo X M, et al. Science, 2022, 375(6579), 434.
55 Jia J C, Wu F, Zhu L N, et al. ACS Applied Materials & Interfaces, 2021, 13(28), 33328.
56 Li Z, Li B, Wu X, et al. Science, 2022, 376(6591), 416.
57 Mehdi H, Selmi O, Mhamdi A, et al. Journal of Materials Science-Materials in Electronics, 2022, 33(8), 5351.
58 Huang B O, Xia X F, Wang X F, et al. Solar Energy Materials and Solar Cells, 2022, 240, 111682.
59 Jiang Y Y, Li J, Xiong S X, et al. Journal of Materials Chemistry A, 2017, 5(33), 17632.
60 Yang D, Zhang X, Wang K, et al. Nano letters, 2019, 19(5), 3313.
61 Cheng Z D, Gao C, Song J N, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40778.
62 Zhu X M, Sun J, Yan S, et al. New Journal of Chemistry, 2019, 43(18), 7130.
63 Xu R G, Wang Z F, Xu W Z, et al. RRL Solar, 2021, 5(7), 2100236.
64 Patel M S, Chaudhary D K. Journal of Materials Science-Materials in Electronics, 2020, 31(14), 11150.
65 Lee S H, Hong S, An S, et al. Electronic Materials Letters, 2020, 16(6), 588.
66 Li X, Sheng W P, Duan X P, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 34161.
[1] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[2] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[3] 马晓波, 曹志杰, 沈宏君, 樊凯, 康欣欣, 米金辉. 低气压下N型晶硅太阳电池P型发射极的两步扩散法制备研究[J]. 材料导报, 2022, 36(22): 21050044-5.
[4] 李成, 李绍元, 马文会, 陈秀华, 刘家森, 王琦迪, 陶继尧. 石墨烯/硅肖特基结界面优化研究进展[J]. 材料导报, 2022, 36(21): 20080040-8.
[5] 高慧, 杨瑞霞. DBR结构设计与GaInP/GaInAs/Ge太阳电池性能关系[J]. 材料导报, 2022, 36(4): 20110082-6.
[6] 丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
[7] 刘璋, 陈新亮, 侯国付, 李跃龙, 丁毅, 赵颖, 张晓丹. 高效钙钛矿太阳电池及其叠层电池研究进展[J]. 材料导报, 2021, 35(15): 15031-15046.
[8] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[9] 袁清堂, 于艳敏, 宋旭锋. 基于YD2-o-C8的高效卟啉染料敏化剂的研究进展[J]. 材料导报, 2021, 35(9): 9210-9217.
[10] 侯晨阳, 付明, 刘雷, 尹光, 汪小红, 吕文中, 范琳. 玻璃粉对PERC太阳能电池铝电极结构和性能的影响[J]. 材料导报, 2020, 34(22): 22005-22009.
[11] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(Z2): 17-18.
[12] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[13] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[14] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[15] 方文中, 孙韬, 端勇, 王盼, 倪子涛, 杨宇. Si/PEDOT∶PSS异质结太阳能电池研究进展[J]. 材料导报, 2019, 33(23): 3908-3914.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed