Research Progress of Titanium-based Hydroxyapatite Composites for Bone Implantation
XIE Fangxia1,2,*, HUANG Jiabing1, CAO Shu3, YANG Hao1, HE Xueming1,2
1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China 2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, Jiangsu, China 3 School of Mechanical Technology, Wuxi Institute of Technology, Wuxi 214121, Jiangsu, China
Abstract: Titanium and its alloys, which exhibit high strength, low modulus, excellent corrosion resistance and good biocompatibility, have been widely utilized in the field of biomedical sciences, especially as hard tissue replacement materials. However, due to the bioinert nature of titanium alloys, satisfactory osseointegration with human bone after their implantation is hard to achieve. Bioactive ceramics such as hydroxyapatite can induce deposition of osteoid apatite and cell adhesion, but their inherent brittleness limits their application in load-bearing. To improve the bioactivity of implants, the development of novel titanium-based hydroxyapatite composites as orthopedics materials has gained significant attention. Hydroxyapatite is surface coated on the titanium alloy to achieve a significantly improved bioactivity. This approach also has some shortco-mings:the resultant material exhibits low bonding strength and easy cracking of the coating. Therefore, the material needs to be improved in terms of coating composition, structure gradient, and post treatment. Although the metallurgical bonding between bioactive ceramics and metal matrix can be realized using powder metallurgy, it is difficult to accurately control and adjust the composition distribution and structural characteristics of materials. Natural bone has a gradient structure composed of porous cancellous bone and compact cortical bone. Matching these features is difficult for the orthopedic prostheses prepared by traditional powder metallurgy. The additive manufacturing (AM) technology can customize the implants through a layer-by-layer formation method, which is known to be highly advantageous in preparation of gradient composites. In recent years, the researchers have attempted to achieve compositional and structural gradients of the implants using AM to further improve their mechanical and biological properties. This paper summarizes research status of the titanium-based hydroxyapatite and discusses the solution strategies of the existing problems. Based on the microdroplet injection technology, we propose a new AM method for preparing multidimensionally gradient titanium-based hydroxyapatite composites to provide a reference for development of new functional biocomposites.
颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
XIE Fangxia, HUANG Jiabing, CAO Shu, YANG Hao, HE Xueming. Research Progress of Titanium-based Hydroxyapatite Composites for Bone Implantation. Materials Reports, 2023, 37(13): 21070222-7.
1 Yu Z T, Yu S, Chen J, et al. Acta Metallurgica Sinica, 2017, 53(10), 1239 (in Chinese). 于振涛, 余森, 程军, 等. 金属学报, 2017, 53(10), 1239. 2 Zhang L C, Chen L Y. Advanced Engineering Materials, 2019, 21(4), 1801215. 3 Sidhu S S, Singh H, Gepreel M A H. Materials Science and Engineering C, 2020, 121, 111661. 4 Jin Y R, Jia Q M, Shan S Y. Materials Reports, 2019, 33(23), 4008 (in Chinese). 晋艳茹, 贾庆明, 陕绍云. 材料导报, 2019, 33(23), 4008. 5 Prakash C, Singh S, Gupta M K, et al. Materials, 2018, 11(9), 1602. 6 Farrahnoor A, Zuhailawati H. Materials Today Communications, 2021, 27, 102209. 7 Fan X P. Ceramics International, 2019, 45, 16466. 8 Peng Q, Bin X, Xu X Y, et al. Journal of Alloys and Compounds, 2020, 825, 153102. 9 Lin Q X, Yin M, Wei Y, et al. Progress in Chemistry, 2020, 32(4), 406 (in Chinese). 林巧霞, 殷萌, 魏延, 等. 化学进展, 2020, 32(4), 406. 10 Sun Y, Luo M R, Zheng L, et al. Chinese Journal of Tissue Engineering Research, 2021, 25(28), 4516 (in Chinese). 孙阳, 罗鸣然, 郑力, 等. 中国组织工程研究, 2021, 25(28), 4516. 11 He D H, Liu P, Liu X K, et al. Journal of Alloys and Compounds, 2016, 672, 336. 12 Wang G H, Liu X M, He D Y, et al. Surface Technology, 2019, 48(4), 91 (in Chinese). 王国红, 刘晓梅, 贺定勇, 等. 表面技术, 2019, 48(4), 91. 13 Tang P, Jiang S Q, Wang G. Materials China, 2021, 40(8), 631 (in Chinese). 唐萍, 江少群, 王刚. 中国材料进展, 2021, 40(8), 631. 14 Zou Y L, Chen Q Y, Yao H L, et al. Journal of Synthetic Crystals, 2018, 47(4), 744 (in Chinese). 邹岩龙, 陈清宇, 姚海龙, 等. 人工晶体学报, 2018, 47(4), 744. 15 Zhao Z C. Design and optimization of plasma sprayed graded hydroxyapatite coating. Master's Thesis, Beijing University of Technology, China, 2018 (in Chinese). 赵子淳. 等离子喷涂羟基磷灰石梯度涂层设计优化. 硕士学位论文, 北京工业大学, 2018. 16 Zhao W. Study of plasma sprayed hydroxyapatite coatings. Master's Thesis, North University of China, China, 2019 (in Chinese). 赵文. 等离子喷涂羟基磷灰石涂层的研究, 硕士学位论文, 中北大学, 2019. 17 Wang L L, Wang X F, Ding X, et al. Materials Reports, 2012, 26(17), 80 (in Chinese). 王莉丽, 王秀峰, 丁旭, 等. 材料导报, 2012, 26(17), 80. 18 Li T T, Ling L, Lin M C, et al. Journal of Materials Science, 2020, 55, 6352. 19 Li B B, Wang L X, Li J. Beijing Journal of Stomatology, 2020, 28(2), 72 (in Chinese). 李贝贝, 王凌霄, 李钧. 北京口腔医学, 2020, 28(2), 72. 20 Ke D X, Vu A A, Bandyopadhyay A, et al. Acta Biomaterialia, 2019, 84, 414. 21 Fu D L, Jiang Q H, He F M, et al. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2017, 18(9), 778. 22 Hsu H C, Wu S C, Fu C L, et al. Journal of Materials Science, 2010, 45, 3661. 23 Wang W Y, Lu G, Xie J P, et al. Surface Technology, 2011, 40(5), 21 (in Chinese). 王文焱, 卢高, 谢敬佩, 等. 表面技术, 2011, 40(5), 21. 24 Song Z H, Sun Y N, Xu G Q. Acta Materiae Compositae Sinica, 2015, 32(6), 1800 (in Chinese). 宋子豪, 孙耀宁, 徐国强. 复合材料学报, 2015, 32(6), 1800. 25 Singh S, Prakash C, Singh H. Surface and Coatings Technology, 2020, 398(25), 126072. 26 Zhao Q. Study on microstructure and properties of biomedical Ti-24Nb-4Zr-7.9Sn-xMe (Me=Cu, Ag, Co) prepared by high-energy milling and cold pressed sintering. Master's Thesis, Jiangsu University, China, 2018 (in Chinese). 赵倩. 高能球磨冷压烧结制备Ti-24Nb-4Zr-7.9Sn-xMe(Me=Cu, Ag, Co)生物医用材料的组织与性能研究. 硕士学位论文, 江苏大学, 2018. 27 Xu W, Hou C J, Mao Y X, et al. Bioactive Materials, 2020, 5, 659. 28 Huang B Y, Wei W F, Li S L, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 1917 (in Chinese). 黄伯云, 韦伟峰, 李松林, 等. 中国有色金属学报, 2019, 29(9), 1917. 29 Shao Z Y, Li F, Zhang J L, et al. Metallic Functional Materials, 2017, 24(2), 13 (in Chinese). 邵甄胰, 李峰, 张建林, 等. 金属功能材料, 2017, 24(2), 13. 30 Guo Z M, Lu B X, Yang F, et al. Powder Metallurgy Industry, 2020, 30(2), 1 (in Chinese). 郭志猛, 芦博昕, 杨芳, 等. 粉末冶金工业, 2020, 30(2), 1. 31 Bovand D, Yousefpour M, Rasouli S, et al. Materials and Design, 2015, 65, 447. 32 Bovand D, Allazadeh M R, Rasouli S, et al. Journal of the Australian Ceramic Society, 2019, 55, 395. 33 Li G, Liu Y T, Zhang J B, et al. Heat Treatment of Metals, 2017, 42(1), 15 (in Chinese). 李刚, 刘云婷, 张井波, 等. 金属热处理, 2017, 42(1), 15. 34 Singh G, Sharma N, Kumar D, et al. Materials Chemistry and Physics, 2020, 243(1), 122662. 35 Xie F X, Huang J B, Yang H, et al. Materials Today Communications, 2021, 29, 102887. 36 Arifin A, Sulong A B, Muhamad N, et al. Materials and Design, 2014, 55, 165. 37 Wang Q F, Zhang Y M, Guo X H, et al. Rare Metals and Cemented Carbides, 2014, 42(3), 44 (in Chinese). 王庆福, 张彦敏, 国秀花, 等. 稀有金属与硬质合金, 2014, 42(3), 44. 38 Shan W R, Zhang Y Q, He Z Y, et al. Materials Reports, 2017, 31(22), 60 (in Chinese). 单文瑞, 张玉勤, 何正员, 等. 材料导报, 2017, 31(22), 60. 39 Xie M Y, Shi J J, Chen G P, et al. Powder Metallurgy Industry, 2019, 29(3), 66 (in Chinese). 谢蒙优, 石建军, 陈国平, 等. 粉末冶金工业, 2019, 29(3), 66. 40 Prakash C, Singh S, Ramakrishna S, et al. Journal of Alloys and Compounds, 2020, 824(25), 153774. 41 Wang X P, Kong F T, Han B Q, et al. Journal of the Mechanical Beha-vior of Biomedical Materials, 2017, 75, 222. 42 Wang X P, Chen Y Y, Xu L J, et al. Journal of the Mechincal Behavior of Biomedical and Materials, 2011, 4, 2074. 43 Li G, Wang Y, Tian Z W, et al. Heat Treatment of Metals, 2020, 45(7), 135 (in Chinese). 李刚, 王莹, 田宗伟, 等. 金属热处理, 2020, 45(7), 135. 44 Jiao M Q, He Y H, Deng X, et al. Acta Materiae Compositae Sinica, 2019, 36(1), 139 (in Chinese). 焦美琪, 何远怀, 邓霞, 等. 复合材料学报, 2019, 36(1), 139. 45 Jiao M Q. Microstructure, mechanical and mineralization properties of Ti-Ag/Ti-HA gradient biocomposites. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese). 焦美琪. Ti-Ag/Ti-HA梯度复合材料的组织及力学与矿化性能研究. 硕士学位论文, 昆明理工大学, 2018. 46 Zhang J, Jiang Z G, Guo H, et al. Vacuum, 2021, 184, 109863. 47 Prakash C, Singh S, Basak A, et al. Journal of Materials and Technology, 2020, 9(1), 242. 48 Liu K G, Hu S B. The Chinese Journal of Nonferrous Metals, 2020, 30(1), 112 (in Chinese). 刘凯歌, 胡树兵. 中国有色金属学报, 2020, 30(1), 112. 49 Lei Y T, Zhu B, Meng Z D, et al. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(6), 36 (in Chinese). 雷雨涛, 朱斌, 孟增东, 等. 昆明理工大学学报(自然科学版), 2020, 45(6), 36. 50 Zhu L H, Wu L J, Xu X J, et al. Rare Metal Materials and Engineering, 2017, 46(8), 2271 (in Chinese). 朱利华, 吴刘军, 许晓静, 等. 稀有金属材料与工程, 2017, 46(8), 2271. 51 Wang X P, Xu L J, Chen Y Y, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(3), 608. 52 Shan W R. Microstructure and properties of Ti35Nb7Zr/HA bioactive composites prepared by SPS. Master's Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese). 单文瑞. SPS制备Ti35Nb7Zr/HA生物活性复合材料的组织与性能研究. 硕士学位论文, 昆明理工大学, 2017. 53 Wang X P. Sythesization and properties of Ti-Nb-Sn/HA composites for biomedical application. Ph. D. Thesis, Harbin Institute of Technology, China, 2012 (in Chinese). 王晓鹏. Ti-Nb-Sn/HA 生物医用复合材料制备与性能研究. 博士学位论文, 哈尔滨工业大学, 2012. 54 Ma G, Zhu W, Shi Y S, et al. Journal of the Chinese Ceramic Society, 2017, 45(3), 393 (in Chinese). 马高, 朱伟, 史云松, 等. 硅酸盐学报, 2017, 45(3), 393. 55 Tang H P. Materials China, 2019(1), 35 (in Chinese). 汤慧萍. 中国材料进展, 2019(1), 35. 56 Xie F X, He X M, Ji X G, et al. Materials Technology, 2016, 32(4), 219. 57 Jardini A L, Larosa M A, Filho R M, et al. Journal of Cranio-Maxillo-Facial Surgery, 2014 (42), 1877. 58 Terrazas C A, Murr L E, Bermudez D, et al. Journal of Materials Science and Technology, 2019, 35(2), 309. 59 Han C J, Li Y, Wang Q, et al. Materials and Design, 2018, 141(5), 256. 60 Qian C, Zhang F Q, Sun J. Bio-Medical Materials and Engineering, 2015, 25, 127. 61 Zuo H S, Jin W Z, Shi A N, et al. Foundry Technology, 2020, 41(8), 804 (in Chinese). 左寒松, 金文中, 石阿娜, 等. 铸造技术, 2020, 41(8), 804. 62 Qi L H, Zhong S Y, Luo J. Scientia Sinica (Informationis), 2015, 45(2), 212 (in Chinese). 齐乐华, 钟宋义, 罗俊. 中国科学:信息科学, 2015, 45(2), 212. 63 Zhi L L, Lu X, Sun B, et al. Rare Metal Materials and Engineering, 2017, 46(3), 675 (in Chinese). 支玲玲, 路新, 孙博, 等. 稀有金属材料与工程, 2017, 46(3), 675. 64 Cai J L, Wu H B, Liu F C, et al. Journal of Materials Engineering, 2018, 46(11), 84 (in Chinese). 蔡基利, 吴和保, 刘富初, 等. 材料工程, 2018, 46(11), 84. 65 Chu R Q. Mechanism of ceramics 3D printing based on micro-droplet jetting. Master's Thesis, Hebei University of Technology, China, 2018 (in Chinese). 楚锐清. 基于微滴喷射的陶瓷3D打印机理研究. 硕士学位论文, 河北工业大学, 2018.