Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21070222-7    https://doi.org/10.11896/cldb.21070222
  金属与金属基复合材料 |
钛合金羟基磷灰石骨植入复合材料的研究进展
颉芳霞1,2,*, 黄家兵1, 曹澍3, 杨豪1, 何雪明1,2
1 江南大学机械工程学院,江苏 无锡 214122
2 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122
3 无锡职业技术学院机械技术学院,江苏 无锡 214121
Research Progress of Titanium-based Hydroxyapatite Composites for Bone Implantation
XIE Fangxia1,2,*, HUANG Jiabing1, CAO Shu3, YANG Hao1, HE Xueming1,2
1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, Jiangsu, China
3 School of Mechanical Technology, Wuxi Institute of Technology, Wuxi 214121, Jiangsu, China
下载:  全 文 ( PDF ) ( 5786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛及钛合金因具有高强度、低模量、优异的耐腐蚀性以及良好的生物相容性等优点,被广泛应用于生物医学领域,尤其是作为硬组织替换材料。然而,钛合金属于生物惰性材料,植入人体后难以与人骨实现良好的骨整合。以羟基磷灰石为代表的生物活性陶瓷能够诱导类骨磷灰石沉积和细胞攀附,但不能用于高承载部位。因此,为了改善植入体的生物活性,开发新型钛合金羟基磷灰石复合材料成为骨植入材料的研究热点。
采用表面涂层法在钛合金表面制备羟基磷灰石涂层,能够显著改善基体的生物活性,但是存在两者结合强度不高、涂层易产生裂纹等缺点,需要从涂层成分、结构梯度化以及后处理等方面进行改进。粉末冶金技术能够使生物活性陶瓷与金属基体间实现冶金结合,却难以对材料组分分布和结构特征进行精确控制和调整。自然骨为由内部多孔松质骨和表面致密皮质骨组成的梯度结构,采用传统粉末冶金技术制备的骨科假体很难达到这一要求。增材制造技术可以个性化定制植入体,其逐层堆积的成形方式在梯度复合材料制备方面具有极大优势。近年来,研究人员尝试采用增材制造技术来实现植入体的成分复合化和结构梯度化,进一步调控其力学性能和生物学性能。
本文总结了钛合金羟基磷灰石复合材料的研究现状,指出了目前研究中存在的问题,并进一步讨论了解决策略,最后提出了一种基于微滴喷射技术的钛合金羟基磷灰石多维梯度复合材料的增材制造方案,以期为开发功能复合的新型生物材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颉芳霞
黄家兵
曹澍
杨豪
何雪明
关键词:  钛合金  羟基磷灰石  复合材料  表面涂层  粉末冶金  增材制造    
Abstract: Titanium and its alloys, which exhibit high strength, low modulus, excellent corrosion resistance and good biocompatibility, have been widely utilized in the field of biomedical sciences, especially as hard tissue replacement materials. However, due to the bioinert nature of titanium alloys, satisfactory osseointegration with human bone after their implantation is hard to achieve. Bioactive ceramics such as hydroxyapatite can induce deposition of osteoid apatite and cell adhesion, but their inherent brittleness limits their application in load-bearing. To improve the bioactivity of implants, the development of novel titanium-based hydroxyapatite composites as orthopedics materials has gained significant attention.
Hydroxyapatite is surface coated on the titanium alloy to achieve a significantly improved bioactivity. This approach also has some shortco-mings:the resultant material exhibits low bonding strength and easy cracking of the coating. Therefore, the material needs to be improved in terms of coating composition, structure gradient, and post treatment. Although the metallurgical bonding between bioactive ceramics and metal matrix can be realized using powder metallurgy, it is difficult to accurately control and adjust the composition distribution and structural characteristics of materials. Natural bone has a gradient structure composed of porous cancellous bone and compact cortical bone. Matching these features is difficult for the orthopedic prostheses prepared by traditional powder metallurgy. The additive manufacturing (AM) technology can customize the implants through a layer-by-layer formation method, which is known to be highly advantageous in preparation of gradient composites. In recent years, the researchers have attempted to achieve compositional and structural gradients of the implants using AM to further improve their mechanical and biological properties.
This paper summarizes research status of the titanium-based hydroxyapatite and discusses the solution strategies of the existing problems. Based on the microdroplet injection technology, we propose a new AM method for preparing multidimensionally gradient titanium-based hydroxyapatite composites to provide a reference for development of new functional biocomposites.
Key words:  titanium alloy    hydroxyapatite    composite    surface coating    powder metallurgy    additive manufacturing
发布日期:  2023-07-10
ZTFLH:  TG148  
基金资助: 国家自然科学基金(51501073;51605193;51975251);江苏省自然科学基金(BK20140162)
通讯作者:  *颉芳霞,江南大学机械工程学院副教授、硕士研究生导师。2007年9月至2013年6月在北京科技大学获得材料学专业硕士学位和材料科学与工程专业博士学位。主要研究方向为:新型生物钛基材料、金属增材制造技术/3D打印技术以及先进粉末冶金成形技术。先后主持国家自然科学基金、江苏省自然科学基金和中央专项科研项目,并参与多项国家级、省部级及企业项目。在国内外权威学术期刊上发表学术论文20余篇,申请国家发明专利5项。xiefangxia@aliyun.com   
引用本文:    
颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
XIE Fangxia, HUANG Jiabing, CAO Shu, YANG Hao, HE Xueming. Research Progress of Titanium-based Hydroxyapatite Composites for Bone Implantation. Materials Reports, 2023, 37(13): 21070222-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070222  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21070222
1 Yu Z T, Yu S, Chen J, et al. Acta Metallurgica Sinica, 2017, 53(10), 1239 (in Chinese).
于振涛, 余森, 程军, 等. 金属学报, 2017, 53(10), 1239.
2 Zhang L C, Chen L Y. Advanced Engineering Materials, 2019, 21(4), 1801215.
3 Sidhu S S, Singh H, Gepreel M A H. Materials Science and Engineering C, 2020, 121, 111661.
4 Jin Y R, Jia Q M, Shan S Y. Materials Reports, 2019, 33(23), 4008 (in Chinese).
晋艳茹, 贾庆明, 陕绍云. 材料导报, 2019, 33(23), 4008.
5 Prakash C, Singh S, Gupta M K, et al. Materials, 2018, 11(9), 1602.
6 Farrahnoor A, Zuhailawati H. Materials Today Communications, 2021, 27, 102209.
7 Fan X P. Ceramics International, 2019, 45, 16466.
8 Peng Q, Bin X, Xu X Y, et al. Journal of Alloys and Compounds, 2020, 825, 153102.
9 Lin Q X, Yin M, Wei Y, et al. Progress in Chemistry, 2020, 32(4), 406 (in Chinese).
林巧霞, 殷萌, 魏延, 等. 化学进展, 2020, 32(4), 406.
10 Sun Y, Luo M R, Zheng L, et al. Chinese Journal of Tissue Engineering Research, 2021, 25(28), 4516 (in Chinese).
孙阳, 罗鸣然, 郑力, 等. 中国组织工程研究, 2021, 25(28), 4516.
11 He D H, Liu P, Liu X K, et al. Journal of Alloys and Compounds, 2016, 672, 336.
12 Wang G H, Liu X M, He D Y, et al. Surface Technology, 2019, 48(4), 91 (in Chinese).
王国红, 刘晓梅, 贺定勇, 等. 表面技术, 2019, 48(4), 91.
13 Tang P, Jiang S Q, Wang G. Materials China, 2021, 40(8), 631 (in Chinese).
唐萍, 江少群, 王刚. 中国材料进展, 2021, 40(8), 631.
14 Zou Y L, Chen Q Y, Yao H L, et al. Journal of Synthetic Crystals, 2018, 47(4), 744 (in Chinese).
邹岩龙, 陈清宇, 姚海龙, 等. 人工晶体学报, 2018, 47(4), 744.
15 Zhao Z C. Design and optimization of plasma sprayed graded hydroxyapatite coating. Master's Thesis, Beijing University of Technology, China, 2018 (in Chinese).
赵子淳. 等离子喷涂羟基磷灰石梯度涂层设计优化. 硕士学位论文, 北京工业大学, 2018.
16 Zhao W. Study of plasma sprayed hydroxyapatite coatings. Master's Thesis, North University of China, China, 2019 (in Chinese).
赵文. 等离子喷涂羟基磷灰石涂层的研究, 硕士学位论文, 中北大学, 2019.
17 Wang L L, Wang X F, Ding X, et al. Materials Reports, 2012, 26(17), 80 (in Chinese).
王莉丽, 王秀峰, 丁旭, 等. 材料导报, 2012, 26(17), 80.
18 Li T T, Ling L, Lin M C, et al. Journal of Materials Science, 2020, 55, 6352.
19 Li B B, Wang L X, Li J. Beijing Journal of Stomatology, 2020, 28(2), 72 (in Chinese).
李贝贝, 王凌霄, 李钧. 北京口腔医学, 2020, 28(2), 72.
20 Ke D X, Vu A A, Bandyopadhyay A, et al. Acta Biomaterialia, 2019, 84, 414.
21 Fu D L, Jiang Q H, He F M, et al. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2017, 18(9), 778.
22 Hsu H C, Wu S C, Fu C L, et al. Journal of Materials Science, 2010, 45, 3661.
23 Wang W Y, Lu G, Xie J P, et al. Surface Technology, 2011, 40(5), 21 (in Chinese).
王文焱, 卢高, 谢敬佩, 等. 表面技术, 2011, 40(5), 21.
24 Song Z H, Sun Y N, Xu G Q. Acta Materiae Compositae Sinica, 2015, 32(6), 1800 (in Chinese).
宋子豪, 孙耀宁, 徐国强. 复合材料学报, 2015, 32(6), 1800.
25 Singh S, Prakash C, Singh H. Surface and Coatings Technology, 2020, 398(25), 126072.
26 Zhao Q. Study on microstructure and properties of biomedical Ti-24Nb-4Zr-7.9Sn-xMe (Me=Cu, Ag, Co) prepared by high-energy milling and cold pressed sintering. Master's Thesis, Jiangsu University, China, 2018 (in Chinese).
赵倩. 高能球磨冷压烧结制备Ti-24Nb-4Zr-7.9Sn-xMe(Me=Cu, Ag, Co)生物医用材料的组织与性能研究. 硕士学位论文, 江苏大学, 2018.
27 Xu W, Hou C J, Mao Y X, et al. Bioactive Materials, 2020, 5, 659.
28 Huang B Y, Wei W F, Li S L, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 1917 (in Chinese).
黄伯云, 韦伟峰, 李松林, 等. 中国有色金属学报, 2019, 29(9), 1917.
29 Shao Z Y, Li F, Zhang J L, et al. Metallic Functional Materials, 2017, 24(2), 13 (in Chinese).
邵甄胰, 李峰, 张建林, 等. 金属功能材料, 2017, 24(2), 13.
30 Guo Z M, Lu B X, Yang F, et al. Powder Metallurgy Industry, 2020, 30(2), 1 (in Chinese).
郭志猛, 芦博昕, 杨芳, 等. 粉末冶金工业, 2020, 30(2), 1.
31 Bovand D, Yousefpour M, Rasouli S, et al. Materials and Design, 2015, 65, 447.
32 Bovand D, Allazadeh M R, Rasouli S, et al. Journal of the Australian Ceramic Society, 2019, 55, 395.
33 Li G, Liu Y T, Zhang J B, et al. Heat Treatment of Metals, 2017, 42(1), 15 (in Chinese).
李刚, 刘云婷, 张井波, 等. 金属热处理, 2017, 42(1), 15.
34 Singh G, Sharma N, Kumar D, et al. Materials Chemistry and Physics, 2020, 243(1), 122662.
35 Xie F X, Huang J B, Yang H, et al. Materials Today Communications, 2021, 29, 102887.
36 Arifin A, Sulong A B, Muhamad N, et al. Materials and Design, 2014, 55, 165.
37 Wang Q F, Zhang Y M, Guo X H, et al. Rare Metals and Cemented Carbides, 2014, 42(3), 44 (in Chinese).
王庆福, 张彦敏, 国秀花, 等. 稀有金属与硬质合金, 2014, 42(3), 44.
38 Shan W R, Zhang Y Q, He Z Y, et al. Materials Reports, 2017, 31(22), 60 (in Chinese).
单文瑞, 张玉勤, 何正员, 等. 材料导报, 2017, 31(22), 60.
39 Xie M Y, Shi J J, Chen G P, et al. Powder Metallurgy Industry, 2019, 29(3), 66 (in Chinese).
谢蒙优, 石建军, 陈国平, 等. 粉末冶金工业, 2019, 29(3), 66.
40 Prakash C, Singh S, Ramakrishna S, et al. Journal of Alloys and Compounds, 2020, 824(25), 153774.
41 Wang X P, Kong F T, Han B Q, et al. Journal of the Mechanical Beha-vior of Biomedical Materials, 2017, 75, 222.
42 Wang X P, Chen Y Y, Xu L J, et al. Journal of the Mechincal Behavior of Biomedical and Materials, 2011, 4, 2074.
43 Li G, Wang Y, Tian Z W, et al. Heat Treatment of Metals, 2020, 45(7), 135 (in Chinese).
李刚, 王莹, 田宗伟, 等. 金属热处理, 2020, 45(7), 135.
44 Jiao M Q, He Y H, Deng X, et al. Acta Materiae Compositae Sinica, 2019, 36(1), 139 (in Chinese).
焦美琪, 何远怀, 邓霞, 等. 复合材料学报, 2019, 36(1), 139.
45 Jiao M Q. Microstructure, mechanical and mineralization properties of Ti-Ag/Ti-HA gradient biocomposites. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
焦美琪. Ti-Ag/Ti-HA梯度复合材料的组织及力学与矿化性能研究. 硕士学位论文, 昆明理工大学, 2018.
46 Zhang J, Jiang Z G, Guo H, et al. Vacuum, 2021, 184, 109863.
47 Prakash C, Singh S, Basak A, et al. Journal of Materials and Technology, 2020, 9(1), 242.
48 Liu K G, Hu S B. The Chinese Journal of Nonferrous Metals, 2020, 30(1), 112 (in Chinese).
刘凯歌, 胡树兵. 中国有色金属学报, 2020, 30(1), 112.
49 Lei Y T, Zhu B, Meng Z D, et al. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(6), 36 (in Chinese).
雷雨涛, 朱斌, 孟增东, 等. 昆明理工大学学报(自然科学版), 2020, 45(6), 36.
50 Zhu L H, Wu L J, Xu X J, et al. Rare Metal Materials and Engineering, 2017, 46(8), 2271 (in Chinese).
朱利华, 吴刘军, 许晓静, 等. 稀有金属材料与工程, 2017, 46(8), 2271.
51 Wang X P, Xu L J, Chen Y Y, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(3), 608.
52 Shan W R. Microstructure and properties of Ti35Nb7Zr/HA bioactive composites prepared by SPS. Master's Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese).
单文瑞. SPS制备Ti35Nb7Zr/HA生物活性复合材料的组织与性能研究. 硕士学位论文, 昆明理工大学, 2017.
53 Wang X P. Sythesization and properties of Ti-Nb-Sn/HA composites for biomedical application. Ph. D. Thesis, Harbin Institute of Technology, China, 2012 (in Chinese).
王晓鹏. Ti-Nb-Sn/HA 生物医用复合材料制备与性能研究. 博士学位论文, 哈尔滨工业大学, 2012.
54 Ma G, Zhu W, Shi Y S, et al. Journal of the Chinese Ceramic Society, 2017, 45(3), 393 (in Chinese).
马高, 朱伟, 史云松, 等. 硅酸盐学报, 2017, 45(3), 393.
55 Tang H P. Materials China, 2019(1), 35 (in Chinese).
汤慧萍. 中国材料进展, 2019(1), 35.
56 Xie F X, He X M, Ji X G, et al. Materials Technology, 2016, 32(4), 219.
57 Jardini A L, Larosa M A, Filho R M, et al. Journal of Cranio-Maxillo-Facial Surgery, 2014 (42), 1877.
58 Terrazas C A, Murr L E, Bermudez D, et al. Journal of Materials Science and Technology, 2019, 35(2), 309.
59 Han C J, Li Y, Wang Q, et al. Materials and Design, 2018, 141(5), 256.
60 Qian C, Zhang F Q, Sun J. Bio-Medical Materials and Engineering, 2015, 25, 127.
61 Zuo H S, Jin W Z, Shi A N, et al. Foundry Technology, 2020, 41(8), 804 (in Chinese).
左寒松, 金文中, 石阿娜, 等. 铸造技术, 2020, 41(8), 804.
62 Qi L H, Zhong S Y, Luo J. Scientia Sinica (Informationis), 2015, 45(2), 212 (in Chinese).
齐乐华, 钟宋义, 罗俊. 中国科学:信息科学, 2015, 45(2), 212.
63 Zhi L L, Lu X, Sun B, et al. Rare Metal Materials and Engineering, 2017, 46(3), 675 (in Chinese).
支玲玲, 路新, 孙博, 等. 稀有金属材料与工程, 2017, 46(3), 675.
64 Cai J L, Wu H B, Liu F C, et al. Journal of Materials Engineering, 2018, 46(11), 84 (in Chinese).
蔡基利, 吴和保, 刘富初, 等. 材料工程, 2018, 46(11), 84.
65 Chu R Q. Mechanism of ceramics 3D printing based on micro-droplet jetting. Master's Thesis, Hebei University of Technology, China, 2018 (in Chinese).
楚锐清. 基于微滴喷射的陶瓷3D打印机理研究. 硕士学位论文, 河北工业大学, 2018.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[5] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[6] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[7] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[8] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[9] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[10] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[11] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[12] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[13] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[14] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[15] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed