Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21120011-9    
  金属与金属基复合材料 |
金属及合金材料热变形中的本构模型与热加工图研究进展
陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军
贵研铂业股份有限公司,昆明贵金属研究所,稀贵金属综合利用国家重点实验室,昆明 650106
Research Progress on Constitutive Model and Hot Processing Map for Metals and Alloys in Hot Deformation
CHEN Tiantian, SHI Chenqi, NING Zheda, WEN Ming, GUAN Weiming, GUO Junmei, WANG Chuanjun
State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Sino Platinum Metals Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 3682KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属及合金材料在热变形过程中的流变应力行为的研究一直受到学者们的广泛关注。准确了解材料的流变应力行为不仅可以为热加工工艺的制定提供理论依据,还可以控制材料微观组织的演变,有助于改善金属及合金材料的组织和性能。由于时间和成本的限制,为了研究金属及合金材料的流变应力行为及其加工性,可以采用描述材料动态力学行为的本构模型,同时,建立可优化材料成型参数的热加工图。本文综述了国内外金属及合金材料的本构模型和热加工图的研究进展,重点介绍了唯象本构模型和物理型本构模型的特点与发展,通过分析比较Johnson-Cook模型、Fields-Backofen模型、Arrhenius模型和Zerilli-Armstrong模型的优缺点,总结归纳了它们的预测能力和适用性,为后续研究选择合适的本构模型提供了建议,并介绍了基于原子模型的Raj加工图和基于动态材料模型加工图的原理及几种常见的失稳判断准则。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈天天
施晨琦
宁哲达
闻明
管伟明
郭俊梅
王传军
关键词:  流变应力  本构模型  热加工图  塑性流变失稳    
Abstract: The flow stress behavior of metals and alloys during hot deformation has been widely concerned by scholars. The accurate understanding of material flow stress behavior can not only provide a theoretical basis for the formulation of hot working process, but also control the evolution of material microstructure, which is helpful to optimize the microstructure and properties of metal and alloy materials. However, due to the limitation of time and cost, in order to study the flow stress behavior of metals and alloys, a constitutive model describing the dynamic mechanical behavior of materials can be used. At the same time, in order to study the processability of metals and alloys, a hot processing map which can optimize the fabrication process is established. This paper summarizes the research progress and development of constitutive models and hot processing maps of metals and alloys at home and abroad. The characteristics and development of phenomenological constitutive models and physical-based constitutive models are mainly introduced. The prediction capabilities and applicability of the constitutive models have been concluded based on analyzing and comparing advantages and disadvantages of Johnson-Cook model, Fields-Backofen model, Arrhenius model and Zerilli-Armstrong model. Additionally, the mechanisms of the Raj map based on atomic model and the processing map based on dynamic material model are reviewed in this paper as well as several instability criteria.
Key words:  flow stress    constitutive model    hot processing map    plastic flow instability
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG14  
基金资助: 云南省重大科技专项(202102AB080008;202102AB080005);云南省创新人才项目(202005AD160029)
通讯作者:  cjw@ipm.com.cn   
作者简介:  陈天天,2020年6月毕业于温州大学,获得工学学士学位。现为昆明贵金属研究所硕士研究生,在王传军老师的指导下进行研究。目前主要研究领域为有色及贵金属溅射靶材。
王传军,昆明贵金属研究所正高级工程师、硕士研究生导师。2006年本科毕业于昆明理工大学,2006年在昆明贵金属研究所材料学专业取得硕士学位。2009年加入昆明贵金属研究所,主要从事稀贵金属溅射靶材和功能膜的研发和应用基础研究工作。近年来,发表学术论文20余篇,获授权发明专利16项。
引用本文:    
陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
CHEN Tiantian, SHI Chenqi, NING Zheda, WEN Ming, GUAN Weiming, GUO Junmei, WANG Chuanjun. Research Progress on Constitutive Model and Hot Processing Map for Metals and Alloys in Hot Deformation. Materials Reports, 2022, 36(Z1): 21120011-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21120011
1 林高用, 张辉, 郭武超, 等. 中国有色金属学报, 2001, 11 (3), 412.
2 于洋, 周成, 刘高远, 等. 航空材料学报, 2008, 28 (5), 22.
3 Lei J, Zhu W, Chen L, et al. Materials Today Communications, 2020, 23, 100873.
4 Dou K, Liu Q. Mechanics of Materials, 2020, 148, 103430.
5 Alaneme K K, Babalola S A, Bodunrin M O. Materials Today: Procee-dings, 2021, 38, 942.
6 Yang J Y, Kim W J. Journal of Materials Research and Technology, 2020, 9 (1), 960.
7 Yang Z, Yu W, Lang S, et al. Materials, 2020, 29 (6), 3858.
8 曲凤盛, 周杰, 刘旭光, 等. 稀有金属材料与工程, 2014, 43 (1), 120.
9 李磊, 蔡建华, 陈军. 物理测试, 2019, 37 (3), 14.
10 郑芳, 宋红梅. 宝钢技术, 2003(5), 29.
11 胡克迈. 物理测试, 2006, 24 (5), 34.
12 刘文艳, 袁桂莲, 刘吉斌, 等. 武汉工程职业技术学院学报, 2007, 19 (4), 1.
13 赵宝纯, 李桂艳, 杨静. 鞍钢技术, 2010(5), 28.
14 Lin Y C, Chen M S, Zhong J. Computational Materials Science, 2008, 42 (3), 470.
15 Hajari A, Morakabati M, Abbasi S M, et al. Materials Science and Engineering: A, 2017, 681, 103.
16 周咪, 胡锐, 杨劼人, 等. 热加工工艺, 2021, 50 (21), 74.
17 高志玉, 潘涛, 王卓, 等. 材料热处理学报, 2015, 36 (9), 148.
18 向嵩, 鞠泉, 刘国权. 材料热处理学报, 2010, 31 (3), 97.
19 吴晋彬, 刘国权, 王 浩, 等. 北京科技大学学报, 2010, 32 (10), 1282.
20 王敏婷, 李学通, 姜明昊, 等. 材料热处理学报, 2013, 34 (2), 168.
21 Lin Y C, Chen M S, Zhong J. Computational Materials Science, 2008, 43 (4), 1117.
22 Lin Y C, Chen X M. Materials & Design, 2011, 32 (4), 1733.
23 Rusinek A, Rodríguez-Martínez J A, Arias A. International Journal of Mechanical Sciences, 2010, 52 (2), 120.
24 Shin H, Kim J B. Journal of Engineering Materials and Technology, 2010, 132 (2), 0210091.
25 Johnson G R, Cook W H. In: Proceedings of the 7th International Symposium on Ballistics. Hauge, 1983, pp. 541.
26 Sellars C M, Mctegart W J. Acta Metallurgica, 1966, 14 (9), 1136.
27 Jonas J J, Sellars M. Materials Reviews, 1969, 14 (1), 1.
28 Fields D S, Backofen W A. In: Proceeding of American Society for Testing and Materials, 1957, pp. 1259.
29 张先宏, 崔振山, 阮雪榆. 上海交通大学学报, 2003, 37 (12), 1874.
30 Zerilli F J, Armstrong R W. American Institute of Physics, 1998, 429 (1), 215.
31 Preston D L, Tonks D L, Wallace D C. Journal of Applied Physics, 2003, 93 (1), 211.
32 Rusinek A, Klepaczko J R. International Journal of Plasticity, 2001, 17 (1), 87.
33 张宏建, 温卫东, 崔海涛, 等. 航空动力学报, 2009, 24 (6), 1311.
34 Rao K P, Prasad Y K D V. Journal of Materials Processing Technology, 1995, 53 (3-4), 552.
35 Liu J, Chang H, Hsu T Y, et al. Journal of Materials Processing Techno-logy, 2000, 103 (2), 200.
36 Mandal S, Sivaprasad P V, Venugopal S, et al. Modelling and Simulation in Materials Science and Engineering, 2006, 14 (6), 1053.
37 Mandal S, Sivaprasad P V, Venugopal S. Journal of Engineering Mate-rials and Technology, 2007, 129 (2), 242.
38 Gholamzadeh A, Karimi T A. Mechanics Research Communications, 2009, 36 (2), 252.
39 王煜, 孙志超, 李志颖, 等. 中国有色金属学报, 2011, 21 (11), 2880.
40 Han Y, Qiao G, Sun J, et al. Computational Materials Science, 2013, 67, 93.
41 Mandal S, Sivaprasad P V, Venugopal S, et al. Applied Soft Computing Journal, 2009, 9 (1), 237.
42 Clausen A H, Børvik T, Hopperstad O S, et al. Materials Science and Engineering: A, 2004, 364 (1-2), 260.
43 Prawoto Y, Fanone M, Shahedi S, et al. Computational Materials Science, 2012, 54, 48.
44 Nemat-Nasser S, Guo W G. Mechanics of Materials, 2003, 35 (11), 1023.
45 Tanner A B, McGinty R D, McDowell D L. International Journal of Plasticity, 1999, 15 (6), 575.
46 Follansbee P S, Huang J C, Gray G T. Acta Metallurgica et Materialia, 1990, 38 (7), 1241.
47 He A, Xie G, Zhang H, et al. Materials & Design, 2014, 56, 122.
48 Lin Y C, Chen X M, Liu G. Materials Science and Engineering: A, 2010, 527 (26), 6980.
49 张志, 郎利辉, 李涛, 等. 北京航空航天大学学报, 2009, 35 (5), 600.
50 邓学峰, 张辉, 陈振华. 塑性工程学报, 2006, 13 (3), 83.
51 高倩倩, 胡本润, 杨伟. 热加工工艺, 2014, 43 (12), 113.
52 Quan G, Tong Y, Luo G, et al. Computational Materials Science, 2010, 50 (1), 167.
53 Chen W, Guan Y, Wang Z. Journal of Materials Engineering and Performance, 2016, 25 (9), 4081.
54 李全, 金朝阳. 中国有色金属学报, 2021, 31 (8), 2091.
55 He A, Xie G, Zhang H, et al. Materials & Design, 2013, 52, 677.
56 Lin Y C, Chen M S, Zhang J. Materials Science and Engineering: A, 2009, 499 (1-2), 88.
57 Li H Y, Li Y H, Wang X F, et al. Materials & Design, 2013, 49, 493.
58 Haghdadi N, Zarei-Hanzaki A, Abedi H R. Materials Science and Engineering: A, 2012, 535, 252.
59 Lin Y C, Xia Y C, Chen X M, et al. Computational Materials Science, 2010, 50 (1), 227.
60 Wu B, Li M Q, Ma D W. Materials Science and Engineering: A, 2012, 542, 79.
61 Dong Y, Zhang C, Lu X, et al. Journal of Materials Engineering and Performance, 2016, 25 (6), 2267.
62 Slooff F A, Zhou J, Duszczyk J, et al. Scripta Materialia, 2007, 57 (8), 759.
63 Wu H Y, Yang J C, Zhu F J, et al. Materials Science and Engineering: A, 2013, 574, 17.
64 Changizian P, Zarei-Hanzaki A, Roostaei A A. Materials & Design, 2012, 39, 384.
65 Pilehva F, Zarei-Hanzaki A, Ghambari M, et al. Materials & Design, 2013, 51, 457.
66 Jia W, Zeng W, Zhou Y, et al. Materials Science and Engineering: A, 2011, 528 (12), 4068.
67 Ma X, Zeng W, Sun Y, et al. Materials Science and Engineering: A, 2012, 538, 182.
68 Wanjara P, Jahazi M, Monajati H, et al. Materials Science and Enginee-ring: A, 2005, 396 (1-2), 50.
69 Samantaray D, Mandal S, Bhaduri A K. Computational Materials Science, 2009, 47 (2), 568.
70 Cai J, Wang K, Han Y. High Temperature Materials and Processes, 2016, 35 (3), 297.
71 Kotkunde N, Krishnamurthy H N, Puranik P, et al. Materials & Design, 2014, 54, 96.
72 Samantaray D, Mandal S, Borah U, et al. Materials Science and Engineering: A, 2009, 526 (1-2), 1.
73 朱志武, 宁建国. 塑性力学新进展——2011年全国塑性力学会议论文集. 北京, 2011, pp. 71.
74 舒畅, 程礼, 许煜. 中国有色金属学报, 2020, 30 (5), 1073.
75 Khan A S, Liang R. International Journal of Plasticity, 1999, 15 (10), 1089.
76 Khan A S, Suh Y S, Kazmi R. International Journal of Plasticity, 2004, 20 (12), 2233.
77 Cai J, Wang K, Zhai P, et al. Journal of Materials Engineering and Performance, 2015, 24 (1), 32.
78 Kang W J, Cho S S, Huh H, et al. International Journal of Vehicle Design, 1999, 21 (4-5), 424.
79 Hoge K G, Mukherjee A K. Journal of Materials Science, 1977, 12 (8), 1666.
80 Wang Y, Zeng X, Chen H, et al. Results in Physics, 2021, 27, 104498.
81 Lin P, He Z, Yuan S, et al. Materials Science and Engineering: A, 2012, 556, 617.
21120011-882 Deng J, Lin Y C, Li S, et al. Materials & Design, 2013, 49, 209.
83 Zhou M, Lin Y C, Deng J, et al. Materials & Design, 2014, 59, 141.
84 李全, 金朝阳. 锻压技术, 2021, 46 (3), 221.
85 Jia W, Xu S, Le Q, et al. Materials & Design, 2016, 106, 120.
86 权国政, 刘克威, 王凤彪, 等. 机械工程材料, 2010, 34 (10), 82.
87 Lin Y, Zhang K, He Z, et al. Journal of Materials Engineering and Performance, 2018, 27 (5), 2475.
88 Sellars C M, Whiteman J A. Metal Science and Heat Treatment, 1979, 13 (3-4), 187.
89 Chen Z Y, Xu S Q, Dong X H. Acta Metallurgica Sinica(English Letters), 2008, 21 (6), 451.
90 Ferdowsi R M G, Nakhaie D, Benhangi P H, et al. Journal of Materials Engineering and Performance, 2014, 23 (3), 1077.
91 Zener C, Hollomon J H. Journal of Applied Physics, 1944, 15 (1), 22.
92 Zerilli F J, Armstrong R W. Journal of Applied Physics, 1987, 61 (5), 1916.
93 Lee W S, Liu C Y. Materials Science and Technology, 2005, 21 (9), 1083.
94 Chiou S T, Cheng W C, Lee W S. Materials Science and Engineering: A, 2005, 392 (1-2), 156.
95 Lennon A M, Ramesh K T. International Journal of Plasticity, 2004, 20 (2), 269.
96 Samantaray D, Mandal S, Bhaduri A K, et al. Transactions of the Indian Institute of Metals, 2010, 63 (6), 823.
97 Samantaray D, Mandal S, Bhaduri A K, et al. Materials Science and Engineering: A, 2011, 528 (4-5), 1937.
98 李春阳. 热加工图绘制新方法及应用研究. 硕士学位论文, 燕山大学, 2012.
99 Raj R. Metallurgical Transactions A, 1981, 12 (6), 1089.
100 鲁宏, 戴魏魏, 蒋立鹤, 等. 世界有色金属, 2019 (9), 171.
101 姜雪琦, 樊晓光, 詹梅, 等. 塑性工程学报, 2020, 27 (7), 33.
102 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Metallurgical Tran-sactions A, 1984, 15 (10), 1883.
103 李庆波, 周海涛, 蒋永峰, 等. 有色冶金设计与研究, 2009, 30 (4), 1.
104 黄有林, 王建波, 凌学士, 等. 材料导报, 2008, 22 (S3), 173.
105 孙朝阳, 李亚民, 祥雨, 等. 稀有金属材料与工程, 2016, 45 (3), 688.
106 李淼泉, 李晓丽, 龙丽, 等. 稀有金属材料与工程, 2006, 35 (9), 1354.
107 Prasad Y V R K, Seshacharyulu T. International Materials Reviews, 1998, 43 (6), 243.
108 Prasad Y V R K. Journal of Materials Engineering and Performance, 2003, 12 (6), 638.
109 上官姝哲. 基于加工图技术的Ti3Al基合金锻造工艺优化. 硕士学位论文, 南昌航空大学, 2012.
110 Gegel H, Nadiv S, Raj R. Scripta Metallurgica, 1980, 14 (2), 241.
111 La Salle J, Lefschetz S, Alverson R C. Physics Today, 1962, 15 (10), 59.
112 闫世成. Ti-1023合金复杂结构件等温锻造过程的数值模拟. 硕士学位论文, 西北工业大学, 2005.
113 Murty S V S N, Rao B N. Materials Science and Engineering: A, 1998, 254 (1-2), 76.
114 Murty S V S N, Sarma M S, Rao B N. Metallurgical and Materials Transactions A, 1997, 28 (7), 1581.
115 Li X, Lu S, Wang K, et al. Rare Metal Materials and Engineering, 2008, 37 (4), 577.
[1] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[2] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[3] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[4] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[5] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[6] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[7] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[8] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[9] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[10] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[11] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[12] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[13] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[14] 肖阳, 秦海勤, 徐可君. 基于Bodner-Partom理论的FGH96合金本构建模研究[J]. 材料导报, 2020, 34(16): 16125-16130.
[15] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed