Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100033-9    
  无机非金属及其复合材料 |
再生混凝土抗压性能研究进展
王俊辉1, 黄悦1, 杨国涛1, 魏琦安1, 刘文卓2
1 青岛理工大学土木工程学院,山东 青岛 266033
2 中青建安建设集团有限公司,山东 青岛 266033
Research Progress on Compressive Properties of Recycled Aggregate Concrete
WANG Junhui1, HUANG Yue1, YANG Guotao1, WEI Qi'an1, LIU Wenzhuo2
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
2 Zhongqing Jianan Construction Group Co., Ltd., Qingdao 266033,Shandong, China
下载:  全 文 ( PDF ) ( 5223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,城市的快速发展导致了大量建筑垃圾的产生和排放,从建筑垃圾中制取再生骨料并加以利用,可以有效缓解建筑垃圾填埋带来的坏境问题,符合我国低碳环保、可持续发展的基本国策。
再生骨料表面附着的旧砂浆具有高孔隙率、高吸水率等特点,不仅使再生混凝土的密实度大大降低,还会影响水泥的水化进程,对再生混凝土的力学性能产生不利影响。由于旧砂浆的存在,再生混凝土较普通混凝土有更复杂的界面过渡区。本文总结了部分学者关于再生混凝土界面过渡区的微观研究,揭示了新、旧骨料砂浆界面过渡区对再生混凝土抗压性能的影响。同时从宏观因素(如再生骨料取代率、再生骨料来源、再生骨料类型、骨料含水状态、制备及养护工艺等方面)对再生混凝土的抗压性能进行分析,总结了各因素对抗压强度的影响规律。再生骨料品质的劣性导致现阶段再生混凝土大多应用在非结构构件上,不能充分发挥其经济效益,此外,我国还没有一套完整的再生骨料的应用体系,从破碎工艺到骨料强化工艺等都缺乏指导性的建议或规范。本文建议不宜采用取代率高的再生骨料制备混凝土,尽量选用强度较高的废弃混凝土制成的再生骨料,并在成本控制范围内对骨料进行强化。考虑骨料吸水导致的水灰比变化,通过人工改良级配外加科学的养护方式,可以使再生混凝土达到普通混凝土的抗压性能。最后还归纳了骨料强化方法和再生混凝土抗压强度预测公式,为再生混凝土的工程实际应用奠定了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王俊辉
黄悦
杨国涛
魏琦安
刘文卓
关键词:  再生混凝土  破坏机理  强度影响因素  骨料强化  抗压强度预测    
Abstract: In recent years, the rapid development of the city has led to the generation and discharge of a large amount of construction waste. Making recycled aggregate from the construction waste and using it can effectively alleviate the environmental problems caused by the construction waste landfill. In line with China's low-carbon environmental protection, sustainable development of the basic national policy.
The old mortar attached to the surface of recycled aggregate has the characteristics of high porosity and high water absorption, which not only greatly reduces the compactness of recycled concrete, but also affects the hydration process of cement and adversely affects the mechanical properties of recycled concrete. Recycled concrete has a more complex interface transition zone than ordinary concrete due to the existence of old mortar. The author summarizes some scholars' microscopic research on interface transition zone of recycled concrete and reveals the influence of interface transition zone of new and old aggregate mortar on compressive properties of recycled concrete. At the same time, the compressive properties of recycled concrete are analyzed from macro factors such as replacement rate of recycled aggregate, source of recycled aggregate, type of recycled aggregate, water-bearing state of aggregate, preparation and curing process, and the influence law of each factor on compressive strength is summarized. The inferior quality of recycled aggregate leads to the fact that recycled concrete is mostly used in non-structural components at the present stage, which cannot give full play to its economic benefits. In addition, there is no complete system for the application of recycled aggregate in China, and there are no guiding suggestions or specifications from crushing process to aggregate strengthening process. This paper suggested that the preparation of recycled concrete is unfavorable use high replacement ratio, choose high strength waste concrete made of recycled aggregates, within the scope of the cost control to strengthen aggregate, aggregate water-cement ratio changes caused by water absorption, improved through artificial grading, and scientific maintenance way, can make the recycled concrete compressive properties of normal concrete. Finally, the aggregate strengthening method and the formula for predicting compressive strength of recycled concrete are summarized, which lays a theoretical foundation for the practical application of recycled concrete.
Key words:  recycled aggregate concrete    failure mechanism    strength influencing factors    aggregate strengthening    compressive strength prediction
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51608135;51978351);山东省工业和信息化厅企业技术创新项目(202060101618;202060103805);山东省泰山学者项目(tsqn201909127)
通讯作者:  jeff.yue.huang@outlook.com   
作者简介:  王俊辉,2020年6月毕业于淮阴工学院,获得工学学士学位。现为青岛理工大学土木工程学院硕士研究生,在黄悦教授的指导下进行研究。目前主要研究领域为混凝土材料耐久性。
黄悦,青岛理工大学土木工程学院教授、博士研究生导师。2005年本科毕业于香港城市大学土木工程专业,2007年取得香港城市大学土木工程专业硕士学位后到上海工作,2015年博士毕业于澳大利亚新南威尔士大学土木工程专业。2016年至2019年10月在澳大利亚SCP、WSP工程咨询公司担任结构工程师。2019年11月至今任职于青岛理工大学,目前已在ASCE及ACI等土木工程领域顶级SCI期刊和会议上发表18篇学术论文,担任ASCE、ACI等土木顶级期刊审稿人。主要从事FRP复合材料、混凝土结构时变性能方面的研究。
引用本文:    
王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
WANG Junhui, HUANG Yue, YANG Guotao, WEI Qi'an, LIU Wenzhuo. Research Progress on Compressive Properties of Recycled Aggregate Concrete. Materials Reports, 2022, 36(Z1): 21100033-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100033
1 肖建庄. 再生混凝土, 中国建筑工业出版社, 2008, pp.2.
2 孟二从, 余亚琳, 苏益声, 等. 世界地震工程, 2018, 34(1), 131.
3 Padmini A K, Ramamurthy K, Mathews M S. Construction and Building Materials, 2009, 23(2), 829.
4 胡敏萍. 混凝土, 2008(5), 37.
5 邵昀泓, 庞亚凤, 郑元勋, 等. 郑州大学学报(工学版), 2020, 41(4), 17.
6 刘志龙, 杜向琴, 胡强圣, 等. 盐城工学院学报(自然科学版), 2019, 32(4), 5.
7 Sonebi M, Ammar Y, Diederich P. Sustainability of construction mate-rials, Woodhead Publishing, UK, 2016, pp.371.
8 郭鹏, 韦万峰, 杨帆, 等. 硅酸盐通报, 2017, 36(7), 2280.
9 Etxeberria M, Vázquez E, Marí A. Magazine of Concrete Research, 2006, 58(10), 683.
10 Hussin A, Poole C. Advances in Cement Research, 2010, 22(1), 21.
11 Bai G, Zhu C, Liu C, et al. Construction and Building Materials, 2020, 240, 117978.
12 Chakradhara Rao M, Bhattacharyya S K, Barai S V. Materials and Structures, 2011, 44(1), 205.
13 张晓华, 孟云芳, 贾军, 等. 混凝土, 2014(6), 137.
14 郭樟根, 陈晨, 范秉杰, 等. 建筑结构学报, 2016, 37(S2), 94.
15 周伯贤, 张磊, 贺玲凤. 实验力学, 2017, 32(1), 43.
16 霍洪媛, 范程程, 陈爱玖, 等. 混凝土, 2017(2), 60.
17 贺春鹏, 付兴国, 孙相博, 等. 混凝土与水泥制品, 2019(2), 98.
18 刘书贤, 魏晓刚, 王伟, 等. 建筑结构, 2014, 44(14), 17.
19 姚宇峰, 金宝宏, 章海刚, 等. 广西大学学报(自然科学版), 2016, 41(4), 1187.
20 Barhmaiah B, Leela Priyanka M, Padmakar M. Materials Today: Proceedings, 2021, 37, 2312.
21 王国林, 祁尚远, 李聚义, 等. 混凝土, 2020(3), 168.
22 徐芊, 叶丽敏, 游尹琛, 等. 哈尔滨商业大学学报(自然科学版), 2020, 36(1), 65.
23 李佳彬, 肖建庄, 黄健. 建筑材料学报, 2006(3), 297.
24 肖倍, 安旭文, 杨瑞, 等. 混凝土, 2018(11), 32.
25 GB/T 25176-2010 混凝土和砂浆用再生细骨料, 中国建筑工业出版社, 2010.
26 Silva R V, De Brito J, Dhir R K. Construction and Building Materials, 2016, 105, 400.
27 肖建庄, 范玉辉, 林壮斌. 建筑科学与工程学报, 2011, 28(4), 26.
28 冯庆革, 邵江, 周文安, 等. 混凝土, 2013(5), 62.
29 李秋义, 孔哲, 郭远新, 等. 混凝土, 2016(1), 131.
30 莫建, 李秋义, 岳公冰, 等. 粉煤灰综合利用, 2016(1), 12.
31 郝彤, 赵文兰. 新型建筑材料, 2011, 38(2), 29.
32 Kou S C, Poon C S. Construction and Building Materials, 2015, 77, 501.
33 肖建庄, 雷斌, 袁飚. 建筑结构学报, 2008(5), 94.
34 López-Gayarre F, Serna P, Domingo-Cabo A, et al. Waste Management, 2009, 29(12), 3022.
35 王智威. 新型建筑材料, 2007(7), 57.
36 施养杭, 吴泽进, 彭冲, 等. 工业建筑, 2012, 42(4), 5.
37 王继娜, 徐开东, 李志新, 等. 混凝土与水泥制品, 2019(1), 10.
38 Knaack A M, Kurama Y C. Design of normal strength concrete mixtures with recycled concrete aggregates, Structures Congress 2011, USA, 2011, pp. 3068.
39 李军涛, 陈宇良, 陈宗平, 等. 混凝土, 2015(2), 65.
40 Ahmad Bhat J. In: Second International Conference on Recent Advances in Materials and Manufacturing. India, 2021, pp.1462.
41 Rocco C G, Elices M. Engineering Fracture Mechanics, 2009, 76(2), 286.
42 陈宗平, 周春恒, 徐定一, 等. 应用力学学报, 2017, 34(1), 180.
43 Zhou C, Chen Z. Construction and Building Materials, 2017, 134, 497.
44 Li B, Hou S, Duan Z, et al. Construction and Building Materials, 2021, 268, 121172.
45 李琼, 冯琼, 曹辉. 江苏大学学报(自然科学版), 2019, 40(5), 614.
46 王瑞骏, 缑彦强, 徐帆. 水力发电, 2018, 44(3), 101.
47 Xie T, Gholampour A, Ozbakkaloglu T. Journal of Materials in Civil Engineering, 2018, 30(9), 04018211.
48 肖建庄, 林壮斌, 朱军. 四川大学学报(工程科学版), 2014, 46(4), 154.
49 González-Fonteboa B, Martínez-Abella F. Building and Environment, 2008, 43(4), 429.
50 Ajdukiewicz A, Kliszczewicz A. Cement and Concrete Composites, 2002, 24(2), 269.
51 Çakir Ö, Sofyanli Ö Ö. HBRC Journal, 2015, 11(2), 157.
52 Dilbas H, Şimşk M, Çakir Ö. Construction and Building Materials, 2014, 61, 50.
53 Kou S C, Poon C S. Construction and Building Materials, 2012, 35, 69.
54 Kou S C, Poon C S, Chan D. Materials and Structures, 2008, 41(7), 1191.
55 Kou S C, Poon C S, Agrela F. Cement and Concrete Composites, 2011, 33(8), 788.
56 Du T, Wang W, Liu Z, et al. Journal of Wuhan University of Technology-Materials Science Edition〗, 2010, 25(5), 862.
57 Ann K Y, Moon H Y, Kim Y B, et al. Waste Management, 2008, 28(6), 993.
58 Çakir Ö. Construction and Building Materials, 2014, 68, 17.
59 Hassan A A, Ismail M K, Mayo J. Journal of Building Engineering, 2015, 4, 113.
60 Sriravindrarajah R, Wang N D H, Ervin L J W. International Journal of Concrete Structures and Materials, 2012, 6(4), 239.
61 Berndt M L. Construction and Building Materials, 2009, 23(7), 2606.
62 Achtemichuk S, Hubbard J, Sluce R, et al. Cement and Concrete Composites, 2009, 31(8), 564.
63 Tam V W Y, Tam C M. Construction and Building Materials, 2008, 22(10), 2068.
64 Yaba H K, Naji H S, Younis K H, et al. In: Second International Conference on Aspects of Materials Science and Engineering. Paris, 2021, pp. 4719.
65 Li J, Xiao H, Zhou Y. Construction and Building Materials, 2009, 23(3), 1287.
66 Kong D, Lei T, Zheng J, et al. Construction and Building Materials, 2010, 24(5), 701.
67 Shaban W M, Elbaz K, Yang J, et al. Construction and Building Mate-rials, 2021, 276, 121940.
68 Tazawa E I, Kasai T, Okamoto S I. Doboku Gakkai Ronbunshu, 1989, 1989(408), 139.
69 Tam V W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
70 张学兵, 方志, 匡成钢, 等. 工业建筑, 2012, 42(2), 101.
71 Sato R, Maruyama I, Sogabe T, et al. Journal of Advanced Concrete Technology, 2007, 5(1), 43.
72 Pickel D. Recycled concrete aggregate: influence of aggregate pre-saturation and curing conditions on the hardened properties of concrete. Ph. D. Thesis, University of Waterloo, Canada, 2014.
73 López Gayarre F, López Colina Pérez C, Serrano López M A, et al. Construction and Building Materials, 2014, 53, 260.
74 Butler L, West J S, Tighe S L. Cement and Concrete Research, 2011, 41(10), 1037.
75 Butler L J, West J S, Tighe S L. Journal of Sustainable Cement-Based Materials, 2014, 3(2), 140.
76 Khoshkenari A G, Shafigh P, Moghimi M, et al. Materials & Design, 2014, 64, 345.
77 段珍华, 江山山, 肖建庄, 等. 建筑材料学报, 2021, 24(3), 545.
78 Fonseca N, De Brito J, Evangelista L. Cement and Concrete Composites, 2011, 33(6), 637.
79 Ferreira L, Brito J D, Barra M. Magazine of Concrete Research, 2011, 63(8), 617.
80 Kubissa J, Koper M, Koper W, et al. Procedia Engineering, 2015, 108, 63.
81 Dimitriou G, Savva P, Petrou M F. Construction and Building Materials, 2018, 158, 228.
82 Sui Y, Mueller A. Materials and Structures, 2012, 45(10), 1487.
83 Katz A. Journal of Materials in Civil Engineering, 2004, 16(6), 597.
84 王建, 于瑶, 李豪, 等. 宁夏工程技术, 2021, 20(2), 144.
85 Kou S C, Zhan B J, Poon C S. Cement and Concrete Composites, 2014, 45, 22.
86 Tam V W Y, Tam C M, Le K N. Resources, Conservation and Recycling, 2007, 50(1), 82.
87 李秋义, 全洪珠, 秦原. 再生混凝土性能与应用技术, 中国建材工业出版社, 2010, pp.32.
88 Kim Y, Hanif A, Kazmi S M S, et al. Journal of Cleaner Production, 2018, 191, 339.
89 赵海鑫, 孙莹. 硅酸盐通报, 2019, 38(11), 3518.
90 肖建庄, 吴磊, 范玉辉. 混凝土, 2012(7), 55.
91 Xuan D, Zhan B, Poon C S. Cement and Concrete Composites, 2016, 65, 67.
92 Shi C, Wu Z, Cao Z, et al. Cement and Concrete Composites, 2018, 86, 130.
93 Kukadia V, Parekh D, Gajjar R. International Journal of Civil Enginee-ring Technology, 2017, 8, 351.
94 Xie T, Yang G, Zhao X, et al. Journal of Cleaner Production, 2020, 251, 119752.
95 刘本金, 王延峰, 王恩青. 混凝土世界, 2012(5), 75.
96 王晓飞, 李秋义, 罗健林, 等. 混凝土, 2016(3), 60.
97 Cabral A E B, Schalch V, Molin D C C D, et al. Construction and Buil-ding Materials, 2010, 24(4), 421.
98 Lovato P S, Possan E, Molin D C C D, et al. Construction and Building Materials, 2012, 26(1), 437.
99 Younis K H, Pilakoutas K. Construction and Building Materials, 2013, 49, 688.
100 Pereira P, Evangelista L, De Brito J. Construction and Building Mate-rials, 2012, 28(1), 722.
101 Thomas C, Setién J, Polanco J A, et al. Construction and Building Materials, 2013, 40, 1054.
102 Razzaghi H, Madandoust R, Aghabarati H. Construction and Building Materials, 2021, 276, 122143.
103 Zhu L, Zhao C, Dai J. Construction and Building Materials, 2021, 273, 121750.
[1] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[2] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[3] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[4] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[5] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[6] 邓祥辉, 高晓悦, 王睿, 赵崇基. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034.
[7] 于江, 皮滟杰, 秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021, 35(13): 13011-13017.
[8] 刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031.
[9] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[10] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[11] 孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
[12] 杨荣周, 徐颖, 陈佩圆, 王佳. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072.
[13] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[14] 李恒, 郭庆军, 王家滨. 再生混凝土界面结构及耐久性综述[J]. 材料导报, 2020, 34(13): 13050-13057.
[15] 乔宏霞, 彭宽, 陈克凡, 李江川, 朱翔琛. 陶瓷粉再生混凝土冻融破坏可靠性分析[J]. 材料导报, 2020, 34(10): 10035-10040.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed