Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21080248-6    
  无机非金属及其复合材料 |
载体改性提高船舶尾气锰铬催化剂的脱硝性能
赵颖平1, 陶平1, 李文华1, 闵秀博2, 余忆玄2, 孙天军1,2
1 大连海事大学环境科学与工程学院,辽宁 大连 116023
2 大连海事大学轮机工程学院,辽宁 大连 116023
Support Modification Improves the Denitrification Performance of Ship Exhaust Manganese-Chromium Catalyst
ZHAO Yingping1, TAO Ping1, LI Wenhua1, MIN Xiubo2, YU Yixuan2, SUN Tianjun1,2
1 Environmental Science and Engineering College, Dalian Maritime University, Dalian 116023, Liaoning, China
2 Maritime Engineering College, Dalian Maritime University, Dalian 116023, Liaoning, China
下载:  全 文 ( PDF ) ( 10089KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过共沉淀法制备了ZrO2、Al2O3、CeO2、CeO2-ZrO2和CeO2-Al2O3不同载体改性的Mn-Cr脱硝催化剂,通过BET、XRD、SEM、H2-TPR、NH3-TPD以及XPS等表征手段对制备的脱硝催化剂的微观结构进行了研究,并考察其低温船舶尾气选择催化还原(SCR)脱硝性能。结果表明,载体可以显著改善锰铬催化剂的比表面积,提高催化剂酸性位点数量和强度,进而提升低温脱硝性能;除ZrO2载体外,所得催化剂在175~275 ℃、空速100 000 h-1模拟船舶尾气条件下的NO转化率大于90%;其中,CeO2和CeO2-Al2O3载体的Mn-Cr催化剂在225 ℃、150×10-6 SO2条件下的NO转化率大于80%,低温脱硝性能优良。高价态金属元素可以促进SCR 反应,提高催化剂的低温活性和耐硫性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵颖平
陶平
李文华
闵秀博
余忆玄
孙天军
关键词:  船舶尾气  低温脱硝  金属氧化物  选择催化还原    
Abstract: The manganese-chromium denitration catalysts with different supports of ZrO2, Al2O3, CeO2, CeO2-ZrO2 and CeO2-Al2O3 were prepared by the co-precipitation method. The microstructure characterizations of the as-synthesized catalysts were measured by BET, XRD, SEM, H2-TPR, NH3-TPD andXPS analyses, and the SCR denitrification performances of the catalysts for ship exhaust gas at low-temperature were investigated. The results show that the supports dramatically improve the specific surface area of the manganese-chromium catalyst, increase the number and strength of the acidic sites on catalysts, and improve the denitrification performance at low-temperature. Except for ZrO2 support, the NO conversions of all catalysts exceed 90% under a simulative exhaust gas treatment condition with a temperature of 175—275 ℃ and a space velocity of 100 000 h-1. In addition, the NO conversion rates of CeO2 and CeO2-Al2O3 support catalysts were more than 80% at 225 ℃ accompanied by SO2 at 150×10-6, preserving excellent denitration performance at low-temperature. High-valencce metal elements can promote the SCR reaction and improve the low-temperature activity and sulfur resistance.
Key words:  ship exhaust gas    low-temperature denitration    metal oxide    selective catalytic reduction
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  X511  
基金资助: 国家自然科学基金(21776266)
通讯作者:  suntianjun@dlmu.edu.cn   
作者简介:  赵颖平,2018年6月于大连交通大学获得工学学士学位,现为大连海事大学环境科学与工程学院硕士研究生,在孙天军教授的指导下进行研究。目前主要从事船舶尾气脱硝催化剂方面的研究。
孙天军,大连海事大学轮机工程学院教授、博士研究生导师。2007年于大连理工大学化学工艺专业博士毕业,2008年到中国科学院大连化学物理研究所工作,2011年聘为副研究员,2017年聘为研究员,2019年到大连海事大学轮机工程学院工作至今。主要从事船舶与海洋环保节能领域的应用研究,发表论文70多篇,包括JMCA, Chem.Comm., Chem.Eng.J, Sep.Purif.Tech, Chemosphere, I&EC等。
引用本文:    
赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
ZHAO Yingping, TAO Ping, LI Wenhua, MIN Xiubo, YU Yixuan, SUN Tianjun. Support Modification Improves the Denitrification Performance of Ship Exhaust Manganese-Chromium Catalyst. Materials Reports, 2022, 36(Z1): 21080248-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21080248
1 邓珊珊, 李永红, 阿荣塔娜, 等. 化工进展, 2013, 32(10), 2403.
2 Gao Ruihua, Zhang Dengsong, Liu Xingang, et al. Catalysis Science & Technology, 2013, 3(1), 191.
3 Wang Xiuyun, Lan Zhixin, Zhang Kai, et al. Journal of Physical Chemistry C, 2017, 121(6), 3339.
4 Sun Peng, Guo Ruitang, Liu Shuming, et al. Applied Catalysis A: Gene-ral, 2017, 531, 129.
5 Shi Yiran, Tang Xiaolong, Yi Honghong, et al. Industrial & Engineering Chemistry Research, 2019, 58(9), 3606.
6 Gao Fengyu, Tang Xiaolong, Yi Honghong, et al. Applied Surface Science, 2019, 466, 411.
7 Tang Xiaolong, Wang Chengzhi, Gao Fengyu, et al. Journal of Environmental Chemical Enginnering, 2020, 8(5), 104399.
8 Chen Jiayu, Fu Peng, Lv Daofei, et al. Chemical Engineering Journal, 2021, 407, 127071.
9 Zhu Wenjuan, Tang Xiaolong, Gao Fengyu, et al. Chemical Engineering Journal, 2020, 385, 123797.
10 Wang Fumei, Shen Boxiong, Zhu Shaowen, et al. Fuel, 2019, 249, 54.
11 Liu Yongjin, Hou Yaqin, Han Xiaojin, et al. Chemcatchem, 2020, 12(3), 953.
12 Liu Jie, Li Xinyong, Li Ruoyun, et al. Applied Catalysis A: General, 2018, 549, 289.
13 Chen Sining, Yan Qinghua, Zhang Cheng, et al. Catalysis Today, 2019, 327, 81.
14 Zhou Yuhan, Ren Shan, Wang Mingming, et al. Journal of the Energy Institute, 2021, 99, 97.
15 Huang Xing, Li Shining, Qiu Wenge, et al. Catalysts, 2019, 9(4), 357.
16 Yao Xiaojiang, Kong Tingting, Yu Shuohan, et al. Applied Surface Science, 2017, 402, 208.
17 Chen Zhihang, Yang Qing, Li Hua, et al. Journal of Catalysis, 2010, 276(1), 56.
18 Zhao Peipei, Guo Mingyu, Liu Qingling, et al. Chemical Engineering Journal, 2019, 378, 15.
19 叶飞, 刘荣, 管昊, 等. 环境科学, 2015, 36(3), 1092.
20 常宇钰. Al2O3-TiO2-ZrO2复合氧化物为载体的SCR脱硝催化剂的研究. 硕士学位论文, 重庆大学, 2014.
21 张丹, 姜英男, 李云飞, 等. 化学试剂, 2018, 40(1), 7.
22 Tong Yongming, Li Yushi, Li Zhibin, et al. Applied Catalysis A: Gene-ral, 2020, 590, 117333.
23 Liu Zhiming, Yi Yang, Zhang Shaoxuan, et al. Catalysis Today, 2013, 216, 76.
24 边雪, 肖坤宇, 王书豪, 等. 功能材料, 2019, 50(7), 07079.
25 Zeng Yiqing, Wu Zihua, Guo Lina, et al. Molecular Catalysis, 2020, 488, 11091.
26 Liu Zhiming, Liu Yuxian, Li Yuan, et al. Chemical Engineering Journal, 2016, 283, 1044.
27 Guido Busca, Luca Lietti, Gianguido Ramis, et al. Applied Catalysis B-Environmental, 1998, 18(1-2), 1.
28 Eunyoung Choi, Insik Nam, Younggul Kim. Journal of Catalysis, 1996, 161(2), 597.
29 Zuo Jianliang, Chen Zhihang, Wang Furong, et al. Industrial & Engineering Chemistry Research, 2014, 53(7), 2647.
30 Li Sujing, Wang Xiaoxiang, Tan Shan, et al. Fuel, 2017, 191, 511.
[1] 李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
[2] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[3] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[4] 张浩, 朱永昌, 崔竹, 韩勖, 耿安东. 钾钠物质的量比对LAS光敏微晶玻璃介电性能的影响[J]. 材料导报, 2020, 34(6): 6020-6023.
[5] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[6] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[7] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[8] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[9] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[10] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[11] 张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
[12] 荆秋叶, 彭冬, 袁小亚. 煅烧型锌铝水滑石光还原 Cr(Ⅵ)[J]. 《材料导报》期刊社, 2018, 32(14): 2345-2350.
[13] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[14] 陈明鹏, 张裕敏, 张瑾, 柳清菊. 苯系物(BTEX)检测气敏材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2278-2287.
[15] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed