Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 20120211-5    
  无机非金属及其复合材料 |
长径比和应变率对海泡石的破碎能耗影响研究
徐长锋1, 周友行1,2, 肖加其1, 李昱泽1, 易倩1
1 湘潭大学机械工程学院,湖南 湘潭 411105
2 复杂轨迹加工工艺及装备教育部工程研究中心,湖南 湘潭 411105
Research on the Influence of Aspect Ratio and Strain Rate on the Energy Dissipation of Sepiolite Crushing
XU Changfeng1, ZHOU Youhang1,2, XIAO Jiaqi1, LI Yuze1, YI Qian1
1 School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
2 Engineering Research Center for Complex Trajectory Processing Technology and Equipment, Ministry of Education, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 10241KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究长径比和应变率对海泡石的破碎能耗影响,采用分离式霍普金森压杆(SHPB)对三组不同长径比的海泡石试样在不同应变率下进行动态压缩试验。结果表明:在同种长径比试样中,随着应变率的增加,海泡石试样的应力-应变曲线表现出不同的变化规律。当长径比相同时,应变率越高,海泡石试样的吸收能越大,使得压碎后的碎块尺寸更小且粉末增多。同等水平应变率下,随着长径比增加,海泡石试样的峰值应力不断减小且吸收能不断增大,破碎形态由劈裂变为压碎。当长径比越大且应变率越高时,海泡石试样的破碎程度越大且破碎效果越好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐长锋
周友行
肖加其
李昱泽
易倩
关键词:  海泡石  长径比  应变率  破碎能耗    
Abstract: In order to study the influence of aspect ratio and strain rate on the energy dissipation of sepiolite crushing, the split Hopkinson pressure bar (SHPB) was used to perform the dynamic compression tests on three sepiolite specimens with different aspect ratios under different strain rates. The results show that with the increase of the aspect ratio, the stress-strain curves of the sepiolite with the same aspect ratio have shown different changing laws. Under the same aspect ratio, the higher the strain rate is, the greater the absorption energy of the sepiolite sample will be, which will make the size of the broken pieces smaller and the number of powder increases. At the same level of strain rate, with the increase of the aspect ratio, the peak stress of the sepiolite sample keeps decreasing but the absorption energy increasing, and the broken form of the sepiolite sample changes from splitting to crushing. When the aspect ratio is larger and the strain rate is higher, the breaking degree of the sepiolite sample is greater and the breaking effect is better.
Key words:  epiolite    aspect ratio    strain rate    crushing energy dissipation
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  O382  
基金资助: 国家自然科学基金项目(51775468);湖南省教育厅科学研究项目(20A505)
通讯作者:  zhouyouhang@xtu.edu.cn   
作者简介:  徐长锋,2018年6月获得学士学位。从2018年9月起,在周友行导师的指导下,在湘潭大学机械工程学院攻读硕士研究生学位。主要从事非金属矿物加工研究。
周友行,湘潭大学机械工程学院教授,博士研究生导师。2003年毕业于中南大学机械工程专业,获博士学位。主要从事数字化设计与制造、矿石破碎与物质分离的研究。在国内外科技刊物上发表论文70余篇,授权国家发明专利17项,主持国家自然科学基金项目2项。
引用本文:    
徐长锋, 周友行, 肖加其, 李昱泽, 易倩. 长径比和应变率对海泡石的破碎能耗影响研究[J]. 材料导报, 2022, 36(Z1): 20120211-5.
XU Changfeng, ZHOU Youhang, XIAO Jiaqi, LI Yuze, YI Qian. Research on the Influence of Aspect Ratio and Strain Rate on the Energy Dissipation of Sepiolite Crushing. Materials Reports, 2022, 36(Z1): 20120211-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/20120211
1 周鹏.改性海泡石制备及其对甲醛的吸附行为研究.硕士学位论文,武汉理工大学, 2019.
2 方凯. 三氟化合物与海泡石复合材料的制备及其性能研究.硕士学位论文,湘潭大学,2020.
3 刘石,许金余,刘军忠,等.岩石力学与工程学报,2011,30(9),1864.
4 张号,平琦,苏海鹏.煤炭科学技术,2018, 46 (8),38.
5 Zwiessler R, Kenkmann T, Poelchau M H, et al. Journal of Structural Geology,2017,97(4),225.
6 平琦,骆轩,马芹永,等.岩石力学与工程学报,2015,34(S2),4197.
7 Bankim M,Singh T N, Ranjith P G, et al. Journal of Natural Gas Science & Engineering, 2018,58,178.
8 孟庆山,范超,曾卫星,等.岩土力学,2019,40(1),183.
9 Chakraborty T, Mishra S, Loukus J, et al. International Journal of Rock Mechanics & Mining Sciences, 2016, 85,112.
10 Zhou Y X, Xia K, Li X B, et al. International Journal of Rock Mechanics and Mining Sciences,2012,49,105.
11 石永奎,马源鸿,尹延春.煤炭科学技术,2014,42(2),23.
12 朱晶晶,李夕兵,宫凤强,等.中南大学学报(自然科学版),2012,43(7),2701.
13 Wang F Z, Liu S Y, Cao L. Journal of Structural Geology, 2020,138,104095.
14 贺洋.非金属矿, 2019, 42(4), 56 (in Chinese).
15 Mishra S, Chakraborty T, Matsagar V. Procedia Engineering, 2017,191,2.
16 孟庆彬,韩立军,浦海,等.中国矿业大学学报,2016,45(2),233.
17 金解放,吴越,张睿,等.爆炸与冲击,2020,40(10),42.
18 苗磊刚,牛园园,石必明. 振动与冲击, 2019,38(17),137.
19 Ai D H, Zhao Y H, Wang Q F, et al. Theoretical and Applied Fracture Mechanics,2019,105,1022393.
[1] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[2] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[3] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[4] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[5] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[6] 郭伟娜, 张鹏, 鲍玖文, 孙治国, 田玉鹏, 赵凯月, 赵铁军. 应变硬化水泥基复合材料动力学性能研究现状与进展[J]. 材料导报, 2021, 35(17): 17199-17209.
[7] 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
[8] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[9] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[10] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[11] 陈首, 石少卿, 何秋霖, 李季. 金属网增强混凝土抗冲击性能的试验研究与数值模拟[J]. 材料导报, 2020, 34(20): 20046-20052.
[12] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[13] 胡俊, 任建伟, 王爱国, 吴德义. 非线性梯度胞元分布蜂窝材料的冲击力学响应[J]. 材料导报, 2019, 33(24): 4066-4071.
[14] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[15] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed