Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 20120084-6    
  金属与金属基复合材料 |
新型高氮马氏体耐热铸钢的热处理及相变解析
史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中
天津理工大学材料科学与工程学院,天津 300384
Investigation on Heat Treatment and Phase Transformation for a New High Nitrogen Martensitic Heat-resistant Cast Steel
SHI Tianyu, KONG Weixiong, CHEN Yulin, NING Baoqun, DONG Zhizhong
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
下载:  全 文 ( PDF ) ( 10882KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 9~12Cr马氏体耐热钢在长期高温高压服役中的蠕变强度随M23C6等析出相粗化急剧下降,限制了其在超超临界发电领域的应用。近期研究表明,MN型强化相较M23C6具有更高的结构稳定性和热稳定性。受此启发,本工作在9Cr耐热钢的基础上设计和制备了以氮化物析出强化为主的一种新型高氮(0.27%,质量分数)马氏体耐热钢。本工作结合热平衡模拟、差热分析以及组织观察,制定了均质化(1 000 ℃-10 h)、正火(1 030 ℃-2 h)和回火(760 ℃-2 h)的热处理工艺,并借助透射电镜对其回火组织进行析出相解析。结果表明热处理后最终组织为回火板条马氏体与少量δ-铁素体的混合组织,其中马氏体板条平均宽度约220 nm,板条界分布有几百纳米的Laves相,板条内分布有大量小尺寸的氮化物析出相(MN型、M2N型和M6N型)。高氮马氏体耐热钢在650 ℃时抗拉强度为(386±22) MPa,屈服强度为(263.67±15) MPa,延伸率为(36.22±2)%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史天宇
孔维雄
陈雨琳
宁保群
董治中
关键词:  高氮马氏体耐热钢  热处理  微观组织  超超临界    
Abstract: In ultra-supercritical (USC) power plants, the application of high chromium martensitic heat-resistant steel is commonly limited by the creep strength which decreases seriously when the steel undergoes long-term service at high temperature with the coarsening of precipitates,such as M23C6. In recent studies, MN precipitate exhibits higher stability than M23C6 during elevated temperature service. In this work, a newly-deve-loped high nitrogen (0.27%, mass fraction) martensitic heat-resistant steel was designed and prepared based on 9Cr heat resistant steel, aiming at improving its high temperature performance by precipitation strengthening of nitrides. Optimized heat treatment for high nitrogen martensitic heat-resistant steel was established as homogenization (1 000 ℃-10 h), normalization (1 030 ℃-2 h), and tempering (760 ℃-2 h), referring to thermal equilibrium simulation, differential thermal analysis, and microstructure characterization. The high nitrogen martensitic heat-resistant steel with the heat treatment mentioned above possess the tensile strength of (386±22) MPa, the yield strength of (263.67±15) MPa, and the elongation of (36.22±2)% at 650 ℃. Optical microscopy and transmission electron microscopy results indicate that the final microstructure of the high nitrogen martensitic heat-resistant steel is composed of tempered lath-martensite with the average width of about 220 nm and a few δ-ferrite. Specially, Laves phase with the size of hundreds of nanometers was distributed in boundaries of lath-martensite, and massive nitrides (MN-type, M2N-type and M6N-type) with different sizes were precipitated in lath-martensite.
Key words:  high nitrogen martensitic heat-resistant steel    heat treatment    microstructure    ultra-supercritical
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB35  
基金资助: 国家自然科学基金(51771137)
通讯作者:  zhizhong.dong@email.tjut.edu.cn   
作者简介:  史天宇,2019年9月至2022年3月就读于天津理工大学材料科学与工程学院,硕士学位。主要从事高氮马氏体耐热钢的研究。
董治中,天津理工大学材料科学与工程学院教授,天津市特聘专家。本科、硕士、博士毕业于天津大学,2001年获材料物理与化学专业博士学位。2002年获得日本学术振兴会博士后奖学金,2002—2005年在日本国家材料所从事博士后研究;2005—2008年受邀赴瑞士联邦材料研究所做EMPA项目主管。主要从事超超临界耐热发电材料、海洋工程结构材料、记忆合金材料及相变机理研究。在Acta Materialia等国内外期刊发表文章50多篇,以第一发明人的身份获得欧洲专利一项、中国发明专利5项。
引用本文:    
史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
SHI Tianyu, KONG Weixiong, CHEN Yulin, NING Baoqun, DONG Zhizhong. Investigation on Heat Treatment and Phase Transformation for a New High Nitrogen Martensitic Heat-resistant Cast Steel. Materials Reports, 2022, 36(Z1): 20120084-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/20120084
1 刘正东, 陈正宗, 何西扣, 等.金属学报, 2020, 56, 539.
2 Milović L, Vuherer T, Blačić I, et al. Materials and Design, 2013, 46, 660.
3 Wang S S, Peng D, Chang L, et al. Materials and Design, 2013, 50, 174.
4 Abe F. Engineering, 2015, 1, 221.
5 Bendick W, Gabrel J. Materials at High Temperatures, 2008, 25, 637.
6 Bendick W, Cipolla L, Gabrel J, et al. International Journal of Pressure Vessels & Piping, 2010, 87, 304.
7 Laha K, Chandravathi K, Parameswaran P, et al. Metallurgical & Mate-rials Transactions Part A, 2012, 43, 1174.
8 Silva M A, Teixeira J C, Guimarães A S, et al. Materials Science Forum, 2013, 758, 57.
9 Bassi F, Foletti S, Lo Conte A. Materials at High Temperatures, 2015, 32, 250.
10 Iseda A, Yoshizawa M, Okada H, et al. In: The thermal and nuclear power generation convention collected works. Japan, 2016, pp. 49.
11 Maruyama K, Armaki H G, Chen R P, et al. International Journal of Pressure Vessels & Piping, 2010, 87, 276.
12 Kim M Y, Hong S M, Lee K H, et al. Materials Characterization, 2017, 129, 40.
13 Suzuki K, Kumai S, Kushima H, et al. Tetsu-to-Hagane, 2000, 86, 550.
14 Sawada K, Kushima H, Kimura K, et al. ISIJ International, 2007, 47, 733.
15 Yamasaki S, Mitsuhara M, Nakashima H. ISIJ International, 2018, 58, 1146.
16 张文凤, 刘运强, 刘晓刚, 等.热加工工艺, 2019, 48, 42.
17 Du Y, Li X L, Zhang X, et al. Metallurgical and Materials Transactions A, 2020, 51, 638.
18 Matsubara S, Yamaguchi T, Masuyama F. ISIJ International, 2018, 58, 2095.
19 Kudryavtsev A S, Artem'eva D A, Mikhailov M S. Physics of Metals and Metallography, 2017, 118, 788.
20 Sho A, Ikenda K, Hata S, et al. Tetsu-to-Hagane, 2012, 98, 9.
21 姜锡山. 钢中非金属夹杂物, 冶金工业出版社, 2011.
22 US-ASTM. ASTM E45-2010. America: ASTM International, 2010.
23 Ahn S Y, Kang N. Journal of Welding and Joining, 2013, 31, 8.
24 Chakraborty G, Kumar J G, Vasantharaja P, et al. Journal of Materials Engineering and Performance, 2019, 28, 876.
25 Chen J H, Liu G, Liu X Y, et al. Metallurgical and Materials Transactions A, 2020, 51, 3360.
26 Saini N, Mulik R S, Mahapatra M M. Materials Science & Engineering A, 2018, 716, 179.
27 Toda Y, Nakamura Y, Harada N, et al. Materials Science & Engineering A, 2020, 797, 140104.
28 Liu Z, Liu Z, Wang X, et al. Materials Characterization, 2019, 149, 95.
29 Yu Y, Liu Z, Zhang C, et al. Materials Science & Engineering A, 2020, 788, 139468.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[6] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[7] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[8] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[11] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[12] 刘沁钰, 周利, 戎校宇, 杨海峰, 赵洪运. 镁锂合金焊接技术研究现状[J]. 材料导报, 2022, 36(10): 20080079-10.
[13] 刘腾, 朱政强, 吴蔺峰. 中锰TRIP钢电阻点焊研究进展与展望[J]. 材料导报, 2022, 36(10): 20080023-7.
[14] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[15] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed