Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21010083-6    https://doi.org/10.11896/cldb.21010083
  无机非金属及其复合材料 |
P2-NaxCoO2材料Ca掺杂性质的第一性原理研究
马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新
上海工程技术大学数理与统计学院,上海 201620
First-principles Study on Ca-doping Properties of P2-NaxCoO2 Materials
MA Qiuju, TONG Lu, WANG Lili, MI Yiming, ZHAO Xinxin
The School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 6456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理方法研究了P2-NaxCoO2材料的Ca掺杂性质,结果表明,掺杂Ca倾向位于氧原子与氧原子形成的三棱柱中心,此三棱柱与周围的CoO6八面体共边。Ca通过电子转移与周围的氧发生较强的化学相互作用,削弱了相邻的Co-O键。Ca-CoO2的相互作用强于Na-CoO2的相互作用,Ca的嵌入能约为7.90 eV,几乎是Na的两倍(~4.25 eV)。借助两个Na以及一个Na和一个Ca在CoO2层间形成的稳定结构研究了Ca-Na和Na-Na相互作用,结果表明,Ca-Na的作用使Na难以接近Ca,从而减少了Na在Ca周围的分布。分子动力学研究表明,Ca-Na的相互作用可以抑制Na在不同位置的分布随Na含量的剧烈变化。在P2-NaxCoO2中通过Ca掺杂提高电池的性能主要归因于Ca-CoO2和Ca-Na的强相互作用,这两种作用在一定程度上减缓了充放电过程中材料的结构变化,提高了电池的循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马秋菊
童路
汪丽莉
宓一鸣
赵新新
关键词:  密度泛函理论  P2-NaxCoO2  Ca掺杂  电荷密度  分子动力学    
Abstract: The Ca-doping properties of P2-NaxCoO2 cathode materials for sodium ion batteries had been studied by first-principles calculations based on density functional theory. The doping Ca prefers to locate at the site in the center of the triangular prisms sharing edges with adjacent CoO6 octahedrons. Ca forms a relatively strong chemical interaction with surrounding oxygen by electron transfer, and weaken the adjacent Co-O bonds. The Ca-CoO2 interactions are stronger than Na-CoO2 interactions. The intercalation energy of Ca is calculated to be 7.90 eV, which is almost twice that of Na (~4.25 eV). The stable configurations for two Na or one Na and one Ca are studied to reveal Ca-Na and Na-Na interactions. The effect of Ca-Na makes it difficult for Na to approach Ca, reducing the probability of Na distribution around Ca. Molecular dynamics studies have shown that stronger Ca-Na interaction can suppress the drastic changes of Na distribution as a function of Na content. Finally, it can be concluded that performance improvement of battery by Ca-doping in P2-NaxCoO2 can be ascribed to the strong interactions of Ca-CoO2 and Ca-Na, which slow down the structural change in the charge-discharge process and improve the cycle stability.
Key words:  density functional theory    P2-NaxCoO2    Ca-doping    charge density    molecular dynamics
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  O641  
基金资助: 国家自然科学基金(11504228)
通讯作者:  bighunter@sues.edu.cn   
作者简介:  马秋菊,现为上海工程技术大学数理与统计学院材料物理与化学专业在读硕士研究生。在赵新新副教授的指导下进行研究,目前主要研究方向为钠离子电池钴基正极材料的掺杂改性机制。
赵新新,上海工程技术大学副教授,本科和硕士毕业于浙江大学,博士毕业于复旦大学。现主要从事钠离子电池和自旋电子材料的研究工作,以第一作者和通讯作者发表SCI和EI检索论文10余篇。
引用本文:    
马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
MA Qiuju, TONG Lu, WANG Lili, MI Yiming, ZHAO Xinxin. First-principles Study on Ca-doping Properties of P2-NaxCoO2 Materials. Materials Reports, 2022, 36(12): 21010083-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010083  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21010083
1 Armand M, Tarascon J M. Nature, 2008, 451(7179), 652.
2 Hoffert M I, Caldeira K, Benford G, et al. Science, 2002, 298(5595), 981.
3 Kang B, Ceder G. Nature, 2009, 458(7235), 190.
4 Zhao L N, Zhang T, Zhao H L, et al. Materials Today Nano, 2020, 10, 100072.
5 Zhu W, Wang Y S, Liu D Q, et al. Energies,2018, 11(11),2963.
6 Gao R M, Zheng Z J, Wang P F, et al. Energy Storage Materials, 2020, 30, 9.
7 Deng J Q, Luo W B, Chou S L, et al. Advanced Energy Materials, 2018, 8(4), 1701428.
8 Lao M M, Zhang Y, Luo W B, et al. Advanced Materials, 2017, 29(48), 1700622.
9 Kim H, Kim H, Ding Z, et al. Advanced Energy Materials, 2016, 6(19), 1600943.
10 Ong S P, Chevrier V L, Hautier G, et al. Energy & Environmental Science, 2011, 4(9), 3680.
11 Chen J. Acta Physico-Chimica Sinica, 2019, 35(4), 347 (in Chinese).
陈军. 物理化学学报,2019, 35(4), 347.
12 Molenda J, Delmas C, Hagenmuller P. Solid State Ionics, 1983, 9-10(Part 1), 431.
13 Molenda J, Delmas C, Dordor P, et al. Solid State Ionics, 1984, 12, 473.
14 Delmas C, Braconnier J J, Fouassier C, et al. Solid State Ionics, 1981, 3-4, 165.
15 Fang Y J, Chen Z X, Ai X P, et al. Acta Physico-Chimica Sinica, 2017, 33(1), 211(in Chinese).
方永进, 陈重学, 艾新平, 等.物理化学学报,2017, 33(1), 211.
16 Takahashi Y, Gotoh Y, Akimoto J. Journal of Solid State Chemistry, 2003, 172(1), 22.
17 Meng Y S, Hinuma Y, Ceder G. The Journal of Chemical Physics, 2008, 128(10),104708.
18 Shibata T, Kobayashi W, Moritomo Y. Applied Physics Express, 2013, 6(9), 097101.
19 Stokosa A, Molenda J, Than D. Solid State Ionics, 1985, 15(3), 211.
20 Zhao C, Wang Q, Yao Z, et al. Science, 2020, 370(6517), 708.
21 Ding J J, Zhou Y N, Sun Q, et al. Electrochimica Acta, 2013, 87, 388.
22 Rai A K, Anh L T, Gim J, et al. Ceramics International, 2014, 40(1), 2411.
23 Baster D, Dybko K, Szot M, et al. Solid State Ionics, 2014, 262, 206.
24 Shibata T, Kobayashi W, Moritomo Y. AIP Advances, 2013, 3(3).032104.
25 Sun Y, Guo S, Zhou H. Advanced Energy Materials, 2018, 9(23).1800212.
26 Yang P, Zhang C, Li M, et al. ChemPhysChem, 2015, 16(16), 3408.
27 Chen T, Liu W, Zhuo Y, et al. Chemical Engineering Journal, 2020, 383, 123087.
28 Matsui M, Mizukoshi F, Imanishi N. Journal of Power Sources, 2015, 280, 205.
29 Han S C, Lim H, Jeong J, et al. Journal of Power Sources, 2015, 277, 9.
30 Roger M, Morris D J P, Tennant D A, et al. Nature, 2007, 445(7128), 631.
31 Shu G J, Prodi A, Chu S Y, et al. Physical Review B, 2007, 76(18), 184115.
32 Zandbergen H W, Foo M, Xu Q, et al. Physical Review B, 2004, 70(2), 024101.
33 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15.
34 Blöchl P E. Physical Review B, 1994, 50(24), 17953.
35 Perdew J P, Burke K, Wang Y. Physical Review B, 1996, 54(23), 16533.
36 Sun Y, Guo S, Zhou H. Energy & Environ Science, 2019, 12(3), 825.
37 Kang S M, Park J H, Jin A, et al. ACS Applied Materials & Interfaces 2018, 10(4), 3562.
38 Tang W, Sanville E, Henkelman G. Journal of Physics Condensed Matter, 2009, 21(8), 084204.
39 Sanville E, Kenny S D, Smith R, et al. Journal of Computational Che-mistry, 2007, 28(5), 899.
40 Henkelman G, Andri A, Jónsson H. Computational Materials Science, 2006, 36, 354.
41 Nos'E S. The Journal of Chemical Physics, 1984, 81(1), 511.
42 Hoover W G. Physical Review A, 1985, 31(3), 1695.
[1] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[2] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[3] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[4] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[5] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[6] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[7] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[8] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[9] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[10] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[11] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[12] 寇佩佩, 冯瑞成, 李海燕, 李龙龙. 晶向和温度对含孔洞单晶TiAl-Nb合金断裂行为的影响[J]. 材料导报, 2021, 35(10): 10114-10119.
[13] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[14] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[15] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed