Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21010203-5    https://doi.org/10.11896/cldb.21010203
  无机非金属及其复合材料 |
几何结构对电流驱动纳米带内磁斯格明子移动特性的影响
张光富1,2, 谭伟石1,2, 张赛文1,2, 文兵1
1 湖南城市学院信息与电子工程学院,湖南 益阳 413000
2 全固态储能材料与器件湖南省重点实验室,湖南 益阳 413000
Effect of Geometric Structure on Current-induced Magnetic Skyrmion Motion in Nanostripes
ZHANG Guangfu1,2,TAN Weishi1,2, ZHANG Saiwen1,2, WEN Bing1
1 School of Information and Electronic Engineering, Hunan City University, Yiyang 413000, Hunan, China
2 All-Solid-State Energy Storage Materials and Devices Key Laboratory of Hunan Province,Yiyang 413000, Hunan, China
下载:  全 文 ( PDF ) ( 4298KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研发新一代自旋电子器件要求精确操控纳米带内磁斯格明子的移动。磁斯格明子存在横向移动且移动速度慢是影响新一代自旋电子器件开发应用的主要因素。基于微磁学模拟研究了不同结构纳米带中磁斯格明子在电流驱动作用下的移动特性。电流驱动纳米带内磁斯格明子移动过程中存在横向移动,因此存在最大的注入电流Jmax和最大移动速度Vmax。在矩形纳米带内,JmaxVmax相对较小。通过裁剪矩形纳米带中央形成凹槽纳米带,JmaxVmax可显著提高,但反映驱动效率的速度Vx与注入电流J的比值(Vx/J)不大。提出利用裁剪纳米带边缘形成引导型纳米带来增大Vx/J。相对于矩形纳米带,电流驱动的引导纳米带中磁斯格明子移动时,Vx/J显著增大, 且在一定程度上增大了JmaxVmax。电流驱动纳米带中磁斯格明子移动的最优方案是集合了引导和凹槽纳米带优势的组合纳米带,可获得更大的电流驱动效率、更大的移动速度。这些研究结果可为开发设计新一代自旋电子器件提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张光富
谭伟石
张赛文
文兵
关键词:  磁斯格明子  纳米带  微磁学模拟  自旋极化电流  自旋电子器件    
Abstract: Aprecise control of the skyrmion motion is necessary for the research and development of next-generation spintronic devices. For the current-induced magnetic skyrmion motion, the small skyrmion motion velocity and transverse motion of skrymion are still bottlenecks in the technology application. Current-induced skyrmion motion in the nanostripes with different structures were studied based on the micromagnetism simulation. For the current-induced skyrmion motion in the nanostripe, there are the maximum injection current Jmax and maximum velocity Vmax. In the rectangle nanostripe, the Jmax and Vmax are relatively small. For the groove nanostripes obtained by the taped the center of rectangle nanostripe, the Jmax and Vmax can be significantly increased compared with those of the rectangle nanostripe. However, the ratio of the velocity and injection current density Vx/J, which reflects the driving efficiency, is relatively low. It is firstly proposed that guided nanostripe is formed by tapering the edge of nanostripe to improve Vx/J. In the guided nanostripe, the Vx/J can be significantly increased. The Jmax and Vmax have also been increased to some extent. An optimum channel for skyrmions is a combined nanostripe which has the advantages of guided and groove nanopstripe combined. In the combined nanostripe, the Vx/J is improved, and a larger current density can be injected to obtain a higher motion velocity. The results give guidance for the design and development of spintronic devices based on nanostripes.
Key words:  magnetic skyrmion    nanostripe    micromagnetic simulation    spin-polarized current    spintronic devices
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  O482. 51  
基金资助: 国家自然科学基金(11604091;11547186;11947088);湖南省自然科学基金(2018JJ2019)
通讯作者:  zhanggf@csu.edu.cn   
作者简介:  张光富,副教授,硕士研究生导师,2014年毕业于中南大学凝聚态物理专业,获得博士学位。担任多个学术期刊审稿人。在国内外学术期刊上发表学术论文32篇,申报国家专利12项,其中授权8项。主持科学研究项目11项,其中国家自然科学基金项目2项,省级自然科学研究项目多项。主要研究领域为磁纳米材料的理论与应用、自旋电子器件的研发。
引用本文:    
张光富, 谭伟石, 张赛文, 文兵. 几何结构对电流驱动纳米带内磁斯格明子移动特性的影响[J]. 材料导报, 2022, 36(12): 21010203-5.
ZHANG Guangfu,TAN Weishi, ZHANG Saiwen, WEN Bing. Effect of Geometric Structure on Current-induced Magnetic Skyrmion Motion in Nanostripes. Materials Reports, 2022, 36(12): 21010203-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010203  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21010203
1 Mühlbauer S, Binz B, Jonietz F, et al. Science, 2009, 323(5916), 915.
2 Fert A, Cros V, Sampaio J. Nature Nanotechnology, 2013, 8(3),152.
3 Tomasello R, Martinez E, Zivieri R, et al. Scientific Reports, 2014, 4(1), 6784.
4 Navau C, Delvalle N, Sanchez A, et al. Physical Review B, 2016, 94(18),184104.
5 Luo S, Song M, Li X, et al. Nano Letters, 2018, 18(2), 1180.
6 Fert A, Reyren N, Cros V, et al. Nature Reviews Materials, 2017, 2(7), 17031.
7 Finocchio G, Buttner F, Tomasello R, et al. Journal of Physics D, 2016, 49(42), 42301.
8 Liu Y Z, Zang J D. Acta Physica Sinica, 2018, 67(13), 26(in Chinese).
刘艺舟,臧佳栋. 物理学报,2018, 67(13), 26.
9 Jiang W J, Zhang X C, Yu G Q, et al. Nature Physics, 2017, 13(2), 162.
10 Woo S H, Song K M, Zhang X C, et al. Nature Communications, 2018, 9(1), 959.
11 Toscano D, Mendonça J P A , Miranda A L S, et al. Journal of Magne-tism and Magnetic Materials, 2020, 504(16), 166655.
12 Zhang X C, Zhou Y, Ezawa M. Nature Communications, 2016, 7(1), 10293.
13 Zhang Y, Luo S J, Yan B Q, et al. Nanoscale, 2017, 9(29), 10212.
14 Zhang X C, Xia J, Zhao G P, et al. IEEE Transactions on Magnetics, 2017, 53(3), 1500206.
15 Lin S Z. Physical Review B, 2016, 94(2), 020402(R).
16 Temiryazeva A G, Temiryazeva M P, Zdoroveyshchev A V, et al. Technical Physics, 2019, 64(11),1716.
17 Purnama I, Gan W L, Wong D W, et al. Scientific Reports, 2015, 5(1), 10620.
18 Mulkers J, Waeyenberge B V, Milošević M V. Physical Review B, 2017, 95(14), 144401.
19 Sampaio J, Cros V, Rohart S, et al. Nature Nanotechnology, 2013, 8(11), 839.
20 Zhang Y, Luo S, Yan B,et al. Nanoscale, 2017, 9(29), 10212.
21 Rohart S, Thiaville A. Physical Review B, 2013, 88(18), 184422.
22 Chen X, Kang W, Zhu D Q, et al. Applied Physics Letters, 2017, 111(20), 202406.
23 Vasileios D S, Drosos K, Konstantinos D, et al. Nanoscale, 2019, 11(42), 20102.
24 Zhang G F, Zhang X J, Jiang L J. Materials Reports B:Research Papers, 2016, 30(5), 148(in Chinese).
张光富,张学军, 蒋练军. 材料导报:研究篇,2016, 30(5), 148.
25 Arne V, Jonathan L, Mykola D. AIP Advances, 2014, 4(10), 107133.
[1] 高宾, 张晓军. 水热法合成MoO3单晶纳米带及其形成机理*[J]. 《材料导报》期刊社, 2017, 31(2): 112-116.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed