Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21020154-5    https://doi.org/10.11896/cldb.21020154
  无机非金属及其复合材料 |
废弃砖粉协同固硫灰制备新型路基稳定材料的性能研究
张瑞1, 刘文欢1,2, 张浩1, 李辉1,2,3
1 西安建筑科技大学材料科学与工程学院,西安710055
2 陕西省生态水泥混凝土工程技术研究中心,西安 710055
3 教育部生态水泥工程研究中心,西安 710055
Performance Research on New Subgrade Stabilized Materials Prepared by Waste Brick Powder and Sulfur-fixing Ash
ZHANG Rui1, LIU Wenhuan1,2, ZHANG Hao1, LI Hui1,2,3
1 College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
2 Shaanxi Ecological Cement & Concrete Engineering Technology Research Center, Xi'an 710055, China
3 Ecological Cement Engineering Research Center of Ministry of Education, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 10967KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用废弃砖粉和循环流化床固硫灰协同制备新型路基稳定材料,对其力学、收缩及抗冻等性能进行了系统研究。结果表明,在按m(砖粉)∶m(粉煤灰)=1∶2—1∶4、m(结合料)∶m(混合料)=20∶80—15∶85的要求设计的实验条件下新型路基材料7 d无侧限抗压强度优于石灰粉煤灰基准样。随着砖粉掺量的增加,路基稳定材料的力学性能和耐久性能呈现出先提高后下降的趋势,但都优于标准规定值。当砖粉掺量为30%、固硫灰掺量为70%(均为质量分数)时,新型路基稳定材料的力学、收缩和冻融性能最优。通过XRD、SEM和TGA等方法分析各方案下新型路基材料水化产物的矿物组成、微观形貌和热失重特性,研究多固废协同作用机理。结果表明,在砖粉协同固硫灰制备的新型路基材料中生成的水化产物有钙钒石、水化硅酸钙及碳酸钙,这些水化产物可为新型路基稳定材料提供强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张瑞
刘文欢
张浩
李辉
关键词:  废弃砖粉  固硫灰  路基材料  水化机理    
Abstract: In this work, waste brick powder and circulating fluidized bed solid sulfur ash are used to prepare a new roadbed stabilization material synergistically, and its mechanical, shrinkage and frost resistance properties were systematically studied. The results show that the 7 d unconfined compressive strength of the new roadbed material is better than that of the lime-fly ash reference sample, under the experimental ratios designed according to the requirements of m(brick dust): m (fly ash)=1∶2—1∶4 and m(binding material): m(mixture)=20∶80—15∶85, and the mechanical properties and durability of the roadbed stabilization material show a trend of increasing and then decreasing with the increase of brick dust dosing, but they are better than the standard specified values. When the brick dust dosing is 30% and the stable sulfur ash dosing is 70% (both are mass fractions), the mechanical, shrinkage and freeze-thaw properties of new roadbed stabilization materials were optimal. XRD SEM and TGA methods were used to analyze the mineral composition, microstructure and thermal weight loss characteristics of each scheme's new roadbed materials' hydration products, and the synergistic mechanism of multi-solid waste was studied. The results show that the hydration products generate in the new roadbed materials prepared by the synergistic sulfur ash fixation of brick powder were as follows: ettringite, calcium silicate hydrate and calcium carbonate; these hydration products provide strength for new road base stabilization materials.
Key words:  waste brick powder    sulfur-fixing ash    subgrade material    hydration mechanism
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TU525  
基金资助: 榆林市科技计划项目(CXY-2020-059)
通讯作者:  sunshine_lihui@126.com   
作者简介:  张瑞,于2021年6月毕业于西安建筑科技大学,获得工学硕士学位。主要从事固体废弃物资源化利用方面研究。
李辉,教授,博士研究生导师。分别于1997年和2009年获西安建筑科技大学建筑材料硕士、博士学位。主要研究方向为固体废弃物的资源化利用及新型水泥基材料的低碳制备。近年来发表论文100余篇,其中SCI收录16篇,EI收录9篇。ESI高被引论文2篇,热点论文1篇。参与编著出版的教材、专著4部。
引用本文:    
张瑞, 刘文欢, 张浩, 李辉. 废弃砖粉协同固硫灰制备新型路基稳定材料的性能研究[J]. 材料导报, 2022, 36(12): 21020154-5.
ZHANG Rui, LIU Wenhuan, ZHANG Hao, LI Hui. Performance Research on New Subgrade Stabilized Materials Prepared by Waste Brick Powder and Sulfur-fixing Ash. Materials Reports, 2022, 36(12): 21020154-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020154  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21020154
1 Wang R F. Research on construction and demolition waste disposal system. Master's Thesis, Beijing Jiaotong University, China, 2020 (in Chinese).
王若飞. 建筑垃圾处置体系研究. 硕士学位论文, 北京交通大学, 2020.
2 Ye S L. Journal of Green Science and Technology, 2018(18),124 (in Chinese).
叶胜兰. 绿色科技,2018(18),124.
3 He Y Q, Wang Z, Li L J. Renewable Resources and Circular Economy, 2018,11(5),29 (in Chinese).
何永全, 王政, 李乐继.再生资源与循环经济, 2018,11(5),29.
4 Bektas F, Wang K J, Ceylan H. Construction and Building Materials, 2009, 23, 1909.
5 Turanli L, Bektas F, Monteiro P J M. Cement Concrete Research, 2003, 33(10), 1539.
6 Zhao Y S, Gao J M, Liu C, et al. Journal of Cleaner Production, 2020, 242, 118521.
7 Li L G, Lin Z H, Chen G M, et al. Journal of Cleaner Production, 2020, 274, 122787.
8 Li D X, Lyu J F, Guo Q J, et al. Journal of Engineering for Thermal Energy and Power, 2003(1), 5 (in Chinese).
李登新,吕俊复,郭庆杰,等.热能动力工程, 2003(1), 5.
9 Ji X K. Utilization and some properties of circulating fluidized bed combustion ashes. Master's Thesis, Chongqing University, China, 2007 (in Chinese).
纪宪坤. 流化床燃煤固硫灰渣几种特性与利用研究. 硕士学位论文,重庆大学,2007.
10 Ji X K, Zhou Y X, Leng F G. Coal Ash, 2009, 21(6), 41 (in Chinese).
纪宪坤,周永祥,冷发光.粉煤灰,2009, 21(6), 41.
11 Deng Q D, Wang Q Y, Li Y H, et al. Highway, 2015, 60(5), 177(in Chinese).
邓庆德,王群英,李勇辉,等. 公路,2015, 60(5),177.
12 Zhang K. Study on Road performance of solidfied muddy soil by fluidized bed combustion fly ashes. Master's Thesis, Chongqing University, China, 2012(in Chinese).
张凯. 流化床燃煤固硫灰固化淤泥土路用性能研究. 硕士学位论文,重庆大学,2012.
13 Zhang P. Research on anti-cracking performance of semi-rigid base course in high-grad highway. Ph.D. Thesis, Dalian University of Technology, China, 2007(in Chinese).
张鹏. 高等级公路半刚性基层材料的抗裂性能研究. 博士学位论文,大连理工大学,2007.
14 Huang K H. Geochimica, 1987(1), 48 (in Chinese).
黄开汉. 地球化学, 1987(1), 48.
[1] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[2] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[3] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[4] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[5] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed