Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030010-5    https://doi.org/10.11896/cldb.21030010
  高分子与聚合物基复合材料 |
热处理温度对SiO2微纳纤维形貌及隔热性能的影响
宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军
陆军工程大学石家庄校区,石家庄 050003
Effect of Heat-treatment Temperature on Morphology and Thermal Insulation Properties of SiO2 Micro-Nano Fibers
SONG Yilong, ZHAO Fang, LI Zhizun, CHENG Zhaogang, HUANG Hongjun
Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China
下载:  全 文 ( PDF ) ( 4316KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究煅烧温度与纤维膜隔热性能之间的关系,以正硅酸乙酯(TEOS)和聚乙烯吡络烷酮(PVP)为主要原料,采用静电纺丝技术结合后续热处理制备了SiO2微纳纤维膜。利用热重-差热联用热分析仪、X射线衍射仪、傅里叶变换红外光谱仪、扫描电子显微镜和导热系数仪研究了SiO2/PVP杂化纤维膜的热分解过程以及热处理温度对其产物物相组成、微观形貌和隔热性能的影响。结果表明:杂化纤维膜经600 ℃及以上温度热处理后,产物均为无定形态SiO2;随着热处理温度的升高,无定形态SiO2有向晶态转化的趋势,且纤维的平均直径呈先减小后增大的规律。产物的热导率与纤维直径呈正相关,当热处理温度为800 ℃时,SiO2微纳纤维的平均直径最小,热导率最低(0.032 5 W/(m·K)),其隔热性能优于600 ℃、1 000 ℃热处理温度下的样品,也优于传统石英纤维隔热毡。本工作为SiO2纤维膜隔热性能的优化提供了一定的实验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋一龙
赵芳
李志尊
程兆刚
黄红军
关键词:  SiO2微纳纤维  静电纺丝  热处理温度  导热系数    
Abstract: To explore the relationship between the calcination temperature and the thermal insulation performance of the fiber membrane, this study used tetraethyl orthosilicate (TEOS) and polyvinylpyrrolidone (PVP) as raw materials to prepare SiO2 micro-nano fiber membranes through electrospinning in combination with a follow-up heat treatment. Thermogravimetric and differential thermal analysis, X-ray diffractometer, Fourier infrared spectrometer, scanning electron microscope and thermal conductivity meter were applied to study the thermal decomposition process of SiO2/PVP hybrid fiber membranes and the influences of calcination temperature on the products' phase composition, micromorphology and thermal insulation performance. The results showed that the products were all amorphous SiO2 after they were calcinated at 600 ℃ or above. As heat treatment temperature rose, amorphous SiO2 showed a tendency to transform into crystalline state, and the average fiber diameter decreased before increasing. The products' thermal conductivity was positively related to fiber diameter.When the heat treatment temperature was 800 ℃, SiO2 micro-nano fibers had the smallest average diameter and the lowest thermal conductivity (0.032 5 W/(m·K)), the thermal insulation performance of which is better than that of the sample at heat treatment temperatures of 600 ℃ and 1 000 ℃ and traditional quartz fiber insulation felt. This experiment provides a substantial experimental basis for optimizing the thermal insulation performance of SiO2 fiber membrane.
Key words:  SiO2 micro-nano fiber    electrospinning    heat treatment temperature    thermal conductivity
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TQ34  
基金资助: 河北省重点研发计划项目-军民科技协同创新专项(21351501D);陆军工程大学基础前沿科技创新基金(KYSZJQZL2210)
通讯作者:  zhaofang19821106@163.com   
作者简介:  宋一龙,陆军工程大学硕士研究生,主要从事纤维隔热材料的相关研究。
赵芳,河北师范大学硕士毕业,现为陆军工程大学石家庄校区副教授、硕士研究生导师。多次担任全国大学生金相技能大赛评审委员会及监督委员会委员。主要研究领域为微纳米功能材料,作为项目骨干成员,参与国家自然科学基金、河北省自然科学基金在内的国家级、省部级科研项目10多项,授权国家发明专利7项,实用新型专利5项,所发表论文被SCI、EI索引30余篇。
引用本文:    
宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
SONG Yilong, ZHAO Fang, LI Zhizun, CHENG Zhaogang, HUANG Hongjun. Effect of Heat-treatment Temperature on Morphology and Thermal Insulation Properties of SiO2 Micro-Nano Fibers. Materials Reports, 2022, 36(12): 21030010-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030010  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030010
1 Ding Y H.Composites and controlling morphology of micro/nano-silica.Ph.D. Thesis, Central South University, China, 2012(in Chinese).
丁燕鸿. 微/纳米二氧化硅形貌结构调控及其复合材料研究. 博士学位论文,中南大学, 2012.
2 Zhang F Y, Jiang Y G, Feng Z J,et al. Materials Reports A:Review Papers, 2020, 34(6), 11043(in Chinese).
张凤云, 姜勇刚, 冯军宗, 等.材料导报:综述篇,2020, 34(6), 11043.
3 Wu H. Preparation, assembly and properties of electrospinning nanofibers. Ph.D. Thesis, Tsinghua University, China, 2009 (in Chinese).
伍晖. 电纺丝纳米纤维的制备、组装与性能. 博士学位论文,清华大学, 2009.
4 Liang L H, Li B W. Physical Review B, 2006(73), 153303
5 Li Y, Qiu T B, Zhou Z N, et al. Materials Reports A:Review Papers, 2011, 25(9), 84(in Chinese).
李岩, 仇天宝, 周治南, 等.材料导报:综述篇,2011, 25(9), 84.
6 Li L, Zhang X, Qu Y, et al. Materials Reports,2019, 33(Z1), 89(in Chinese).
李霖, 张旭, 曲飏, 等.材料导报,2019,33(Z1), 8.
7 Si Y, Wang X, Dou L, et al. Science Advances, 2018, 4(4), eaas8925.
8 Zheng H X, Shan H R, Wang X F, et al. RSC Advances, 2015, 5(111), 91813.
9 Liu R T. Journal of Textile Research, 1995(5), 8(in Chinese).
刘让同.纺织学报,1995(5), 8.
10 Wu D X. Study on the thermal conductivity properties of porous materials. Master's Thesis, China University of Mining and Technology,China, 2020 (in Chinese).
吴东旭. 多孔材料导热特性研究. 硕士学位论文, 中国矿业大学, 2020.
11 Cui L L. The quantitative study on the relationship between geometrical structure parameters and heat transfer performance of fabrics. Master's Thesis, Zhongyuan University of Technology, China, 2016 (in Chinese).
崔莉莉. 织物几何结构参数与织物热传递性能的关系的量化研究.硕士学位论文,中原工学院, 2016.
12 Wang B, Wang Y D. Advanced Materials Research,2011, 332, 672.
13 Wang X G, Zhao H, Zhang Q, et al. Inner Mongolia Petrochemical Industry,2001(3), 17(in Chinese).
王喜贵, 赵慧, 张强, 等.内蒙古石油化工,2001(3), 17.
14 Gu Y H,Gu H H,Xu H, et al. Chinese Journal of Inorganic Chemistry,2003(12), 1301(in Chinese).
顾宇辉, 古宏晨, 徐宏, 等.无机化学学报,2003(12), 1301.
15 Ma Z J.Fabrication of low-dimensional micro/nano functional materials with electrospinning and exploration of their potential applications, Ph.D. Thesis, Zhejiang University, China, 2011 (in Chinese).
马志军. 静电纺丝技术制备低维微纳功能材料及应用研究. 博士学位论文,浙江大学, 2011.
16 Chen H S, Sun Z Y, Shao J C. Bulletin of the Chinese Ceramic Society, 2011, 30(4), 934(in Chinese).
陈和生, 孙振亚, 邵景昌.硅酸盐通报, 2011,30(4), 934.
17 Lu T J. International Journal of Heat and Mass Transfer, 1998, 42(11), 2031.
18 Eckert E R G. Analysis of heat and mass transfer, McGraw-Hill, American, 1972.
19 Yang X H. Expression and fractal simulation of morphologic structures of nonwovens. Ph.D. Thesis, Soochow University, 2003 (in Chinese).
杨旭红. 非织造材料(纤维网)形态结构的表征与分形模拟.博士学位论文,苏州大学, 2003.
20 Yang Z K, Hua Y M,Hua T. Cotton Textile Technology, 2011, 39(5), 62(in Chinese).
杨朝坤, 华永明, 花拓.棉纺织技术, 2011, 39(5), 62.
21 Lu X, Arduini-Schuster M C, Kuhn J, et al. Science, 1992, 255(5047), 971.
22 He Y, Zhang X G, Meng X W. Heat Transfer, Chemical Industry Press, China, 2015, pp.50(in Chinese).
何燕, 张晓光, 孟祥文.传热学,化学工业出版社, 2015,pp.50.
23 Yue C W. Preparation, structure and performance of nitrogen-doped graphene aerogel for thermal insulation. Ph.D. Thesis. National University of Defense Technology, 2017 (in Chinese).
岳晨午. N杂化石墨烯气凝胶隔热材料制备、结构及性能研究.博士学位论文,国防科学技术大学, 2017.
24 Tang H J. Preparation and properties characterization of rare earth oxide nanostructured fibers. Master's Thesis, Shandong University, China, 2011(in Chinese).
唐慧娟. 稀土氧化物纳米结构纤维的制备及性质. 硕士学位论文.山东大学, 2011.
25 Verschoor J D,Greebler P. Journal of Heat Transfer, 1952, 74, 961.
26 Chen W Y. Simulation and experimental investigation on microscale interfacial heat transfer. Ph.D. Thesis, Southeast University, China, 2017(in Chinese).
陈伟宇. 微尺度界面传热的模拟和实验研究. 博士学位论文,东南大学, 2017.
27 Strong H M, Bundy F P, Bovenkerk H P. Journal of Applied Physics, 1960, 31(1), 39.
28 Pan N. Journal of Composite Materials, 1994, 28(16),1500.
[1] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[2] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[3] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[4] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[5] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[6] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[7] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[8] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[9] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[10] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[11] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[12] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[13] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[14] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[15] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed