Influence of Air Void Parameters of Aeolian Sand Concrete on Its Strength
DONG Ruixin1, SHEN Xiangdong2, XUE Huijun2, LIU Qian3, WEI Lisi2, MU Ru1
1 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China 2 Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China 3 Civil Engineering and Architecture, Southwest University of Science and Technology,Mianyang 621010,Sichuan, China
Abstract: Aeolian sand from the Ulan Buh desert in the Inner Mongolia Autonomous Region was selected as the fine aggregate, and part of the river sand was replaced by aeolian sand with the mass fraction of 40%. The air void spacing meter and nuclear magnetic resonance technology were used to test the pore structure characteristics of the aeolian sand concrete, scanning electron microscope used to observe the micro morphology within the age of 28 d, and the influence of aeolian sand concrete air void parameters and box dimensions on its strength was explored. The results show that the air content decreases and then increases with the increase of the strength of aeolian sand concrete, and the air content is positively correlated with the specific surface area of bubbles but negatively correlated with the bubble spacing coefficient; the percentage of 10—160 μm pores in ASC20, ASC30 and ASC40 groups of aeolian sand concrete is 75.9%, 84.3% and 91.5%, respectively, and the bubbles larger than 500 μm do not exceed 5.2%; the average chord length of bubbles under the grey entropy theory has the greatest influence on the 28 d compressive strength, and the bubble spacing coefficient has the least influence; the fractal dimension of pores of aeolian sand concrete ranges from 3.514 to 4.015, the correlation coefficient R2 is greater than 0.937, and the increasing trend of fractal dimension of pore volume is more obvious in ASC40 group.
1 国家林业局.第五次全国沙漠化和沙化土地检测情况, 中国林业网, 2015. 2 Jiang H G.In:2018 Academic Annual Meeting of China Sand Control and Sand Industry Association, Qinghai, China, 2018,pp. 7 (in Chinese). 姜海光. 中国治沙暨沙业学会2018年学术年会, 青海, 2018,pp. 7. 3 Wu J C, Shen X D, Dong W, et al. Bulletin of Chinese Ceramic Society, 2015, 34(10), 2845(in Chinese). 吴俊臣, 申向东, 董伟, 等.硅酸盐通报, 2015, 34(10), 2845. 4 Ameta N K, Wayal A S, Hiranandani P. American Journal of Engineering Research, 2013, 2(9), 133. 5 Elipe M G M, Lopez-Querol S. Construction and Building Materials, 2014, 73, 728. 6 Duan Hanchen, Wang Tao, Xue Xian, et al. Environmental Monitoring and Assessment, 2014, 186, 6083. 7 Li Y G, Zhang H M, Liu G X, et al. Journal of Building Materials, 2020, 23(5), 1212 (in Chinese). 李玉根, 张慧梅, 刘光秀, 等.建筑材料学报, 2020, 23(5), 1212. 8 Dong R X, Shen X D, Liu Q, et al. Bulletin of the Chinese Ceramic So-ciety, 2019, 38(6), 1901(in Chinese). 董瑞鑫, 申向东, 刘倩, 等.硅酸盐通报, 2019, 38(6), 1901. 9 Shen X D, Zou Y X, Xue H J, et al. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2), 161(in Chinese). 申向东, 邹欲晓, 薛慧君, 等.农业工程学报, 2019, 35(2), 161. 10 Ye X, Guo Z H, Yao T R. New Building Materials, 2019, 46(4), 34(in Chinese). 叶显, 郭志华, 姚婷芮.新型建筑材料, 2019, 46(4), 34. 11 Li Yugen, Zhang Huimei, Liu Guangxiu, et al. Construction and Buil-ding Materials, 2020, 30(6), 247. 12 Chu Hongyan, Wang Fengjuan, Wang Liguo, et al. Materials, 2020, 13(14), 3148. 13 He Yuan, Yuan Xizhong. Arabian Journal for Science and Engineering, 2020, 45(3), 3559. 14 Wang Y H, Chu Q, Han Q. Journal of Building Materials, 2021, 24(1), 191(in Chinese). 王尧鸿, 楚奇, 韩青. 建筑材料学报, 2021, 24(1), 191. 15 Xue H J, Shen X D, Zou C X, et al. Journal of Building Materials, 2019, 22(2), 199(in Chinese). 薛慧君, 申向东, 邹春霞, 等.建筑材料学报, 2019, 22(2), 199. 16 Huang S G, Chen J J, Wang J X, et al. Materials Reports B: Research Papers, 2020, 34(12), 24045(in Chinese). 黄守刚,陈进杰,王建西,等.材料导报:研究篇, 2020, 34(12), 24045. 17 Zhao H J, Zhu Y C, Ye J K, et al. Low Temperature Construction Technology, 2016, 38(9), 3(in Chinese). 赵海军,朱亚冲,叶金库,等.低温建筑技术,2016,38(9), 3. 18 Wang W Z, Jiang Y C, Yue H W. China Building Materials Science and Technology, 2020, 29(5) , 57(in Chinese). 王文卓,蒋玉川,岳汉威. 中国建材科技,2020,29(5),57. 19 Hu Y Q, Li S X, Zhong C C, et al. Comprehensive Utilization of Fly Ash, 2018(1), 23(in Chinese). 胡怡强, 李双喜, 仲从春, 等. 粉煤灰综合利用, 2018(1), 23. 20 Li W, Lu J Y, Liu H, et al. Concrete, 2016(8), 103(in Chinese). 李炜, 陆加越, 刘浩, 等. 混凝土, 2016(8), 103. 21 Wu J C, Shen X D. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10), 184(in Chinese). 吴俊臣, 申向东.农业工程学报, 2017, 33(10), 184. 22 Dong Wei, Shen Xiangdong, Xue Huijun, et al. Construction and Buil-ding Materials, 2016, 123, 792. 23 混凝土物理力学性能试验方法标准:GB/T 50081-2019,中国建筑工业出版社,2019. 24 Wang Qicai, Zhang Kai, Wang Qingshi. Materials Reports B:Research Papers, 2015, 29(7), 131(in Chinese). 王起才, 张凯, 王庆石.材料导报:研究篇, 2015, 29(7), 131. 25 Guo Z L. Study on the pore structure and mechanical properties of basalt fiber reinforced concrete under single-sided freeze-thaw conditions. Master's Thesis, Inner Mongolia University of Technology, China, 2018(in Chinese) . 郭子麟. 单面冻融条件下玄武岩纤维混凝土孔结构及力学性能研究.硕士学位论文,内蒙古工业大学, 2018. 26 Powers T C, Helmuth R A. High-way Res Board Proceed, 1953, 32,285. 27 Choi P, Yeon J H, Yun K K. Cement and Concrete Composites, 2016, 70(1), 69. 28 Pigeon M, Pleau R. Durability of Concrete in Cold Climates. E & FN Spon,US,1995,pp.47. 29 Deng J L. Systems & Control Letters. 1982, 1(5), 288. 30 Yu X D, Kang Z H, Zhou L, et al. Coal Technology, 2018, 37(5), 129(in Chinese). 余旭东, 康志宏, 周磊, 等. 煤炭技术, 2018, 37(5), 129. 31 Wang Junlei, Wei Yunsheng, Qi Yadong. Transport in Porous Media, 2016, 112(3), 707. 32 Zhi J S, Qiong G, Yi Q X,et al. Bioresource Technology, 2017, 244(1), 117.