Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21010006-5    https://doi.org/10.11896/cldb.21010006
  无机非金属及其复合材料 |
风积沙混凝土的气泡参数对其强度的影响
董瑞鑫1, 申向东2, 薛慧君2, 刘倩3, 维利思2, 慕儒1
1 河北工业大学土木与交通学院,天津 300401
2 内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
3 西南科技大学土木工程与建筑学院,四川 绵阳621010
Influence of Air Void Parameters of Aeolian Sand Concrete on Its Strength
DONG Ruixin1, SHEN Xiangdong2, XUE Huijun2, LIU Qian3, WEI Lisi2, MU Ru1
1 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
2 Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
3 Civil Engineering and Architecture, Southwest University of Science and Technology,Mianyang 621010,Sichuan, China
下载:  全 文 ( PDF ) ( 3321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取内蒙古自治区乌兰布和沙漠的风积沙作为细骨料,用质量分数为40%的风积沙替代部分河砂,采用气泡间距系数测定仪和核磁共振技术对风积沙混凝土孔结构特征进行测试,采用扫描电子显微镜观测风积沙混凝土龄期28 d内的微观形貌,探究风积沙混凝土气泡参数和盒维数对其强度的影响。结果表明,随着风积沙混凝土强度的增加,含气量先减小后增大,含气量与气泡比表面积呈正相关,与气泡间距系数呈负相关;风积沙混凝土ASC20、ASC30、ASC40组10 ~160 μm的气孔占比分别为75.9%、84.3%和91.5%,大于500 μm的气泡均不超过5.2%;灰熵理论下气泡的平均弦长对28 d抗压强度影响最大,气泡间距系数的影响最小;风积沙混凝土孔隙的分形维数为3.514~4.015,相关系数R2均大于0.937,ASC40组的孔体积分形维数递增趋势较为明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董瑞鑫
申向东
薛慧君
刘倩
维利思
慕儒
关键词:  风积沙混凝土  抗压强度  气泡参数  孔结构  灰色关联度  分形理论    
Abstract: Aeolian sand from the Ulan Buh desert in the Inner Mongolia Autonomous Region was selected as the fine aggregate, and part of the river sand was replaced by aeolian sand with the mass fraction of 40%. The air void spacing meter and nuclear magnetic resonance technology were used to test the pore structure characteristics of the aeolian sand concrete, scanning electron microscope used to observe the micro morphology within the age of 28 d, and the influence of aeolian sand concrete air void parameters and box dimensions on its strength was explored. The results show that the air content decreases and then increases with the increase of the strength of aeolian sand concrete, and the air content is positively correlated with the specific surface area of bubbles but negatively correlated with the bubble spacing coefficient; the percentage of 10—160 μm pores in ASC20, ASC30 and ASC40 groups of aeolian sand concrete is 75.9%, 84.3% and 91.5%, respectively, and the bubbles larger than 500 μm do not exceed 5.2%; the average chord length of bubbles under the grey entropy theory has the greatest influence on the 28 d compressive strength, and the bubble spacing coefficient has the least influence; the fractal dimension of pores of aeolian sand concrete ranges from 3.514 to 4.015, the correlation coefficient R2 is greater than 0.937, and the increasing trend of fractal dimension of pore volume is more obvious in ASC40 group.
Key words:  aeolian sand concrete    compressive strength    air void parameter    pore structure    grey correlation degree    fractal theory
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878239;51769025)
通讯作者:  ru_mu@hotmail.com   
作者简介:  董瑞鑫,2017年6月本科毕业于河北农业大学土木工程专业,2020年6月硕士毕业于内蒙古农业大学土木工程专业,主要从事新型建筑材料和混凝土耐久性研究。2020年9月至今就读于河北工业大学土木工程专业,现从事定向钢纤维混凝土等研究。
慕儒,博士,教授级高工,博士研究生导师。2000年于东南大学获工学博士学位,研究混凝土耐久性;2000—2009年在江苏省建筑科学研究院从事研究工作,研究方向为高性能混凝土、混凝土耐久性;期间于2002.04—2003.04在荷兰代尔夫特理工大学从事研究工作,2006.05—2009.04在英国利兹大学从事研究工作。2009年加入河北工业大学土木与交通学院,期间于2014.01-2014.04在美国普渡大学从事研究工作。兼任中国土木工程学会纤维混凝土专委会委员、混凝土耐久性专委会委员、中国硅酸盐学会固废分会理事、中国电子显微镜学会无机非金属建筑材料微观测试与分析委员会委员。主持和参与国家自然科学基金项目6项,省部级项目10余项,曾在国内外学术期刊发表论文60多篇(SCI\EI收录20多篇),曾两次获国家科技进步二等奖。
引用本文:    
董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
DONG Ruixin, SHEN Xiangdong, XUE Huijun, LIU Qian, WEI Lisi, MU Ru. Influence of Air Void Parameters of Aeolian Sand Concrete on Its Strength. Materials Reports, 2022, 36(12): 21010006-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010006  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21010006
1 国家林业局.第五次全国沙漠化和沙化土地检测情况, 中国林业网, 2015.
2 Jiang H G.In:2018 Academic Annual Meeting of China Sand Control and Sand Industry Association, Qinghai, China, 2018,pp. 7 (in Chinese).
姜海光. 中国治沙暨沙业学会2018年学术年会, 青海, 2018,pp. 7.
3 Wu J C, Shen X D, Dong W, et al. Bulletin of Chinese Ceramic Society, 2015, 34(10), 2845(in Chinese).
吴俊臣, 申向东, 董伟, 等.硅酸盐通报, 2015, 34(10), 2845.
4 Ameta N K, Wayal A S, Hiranandani P. American Journal of Engineering Research, 2013, 2(9), 133.
5 Elipe M G M, Lopez-Querol S. Construction and Building Materials, 2014, 73, 728.
6 Duan Hanchen, Wang Tao, Xue Xian, et al. Environmental Monitoring and Assessment, 2014, 186, 6083.
7 Li Y G, Zhang H M, Liu G X, et al. Journal of Building Materials, 2020, 23(5), 1212 (in Chinese).
李玉根, 张慧梅, 刘光秀, 等.建筑材料学报, 2020, 23(5), 1212.
8 Dong R X, Shen X D, Liu Q, et al. Bulletin of the Chinese Ceramic So-ciety, 2019, 38(6), 1901(in Chinese).
董瑞鑫, 申向东, 刘倩, 等.硅酸盐通报, 2019, 38(6), 1901.
9 Shen X D, Zou Y X, Xue H J, et al. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2), 161(in Chinese).
申向东, 邹欲晓, 薛慧君, 等.农业工程学报, 2019, 35(2), 161.
10 Ye X, Guo Z H, Yao T R. New Building Materials, 2019, 46(4), 34(in Chinese).
叶显, 郭志华, 姚婷芮.新型建筑材料, 2019, 46(4), 34.
11 Li Yugen, Zhang Huimei, Liu Guangxiu, et al. Construction and Buil-ding Materials, 2020, 30(6), 247.
12 Chu Hongyan, Wang Fengjuan, Wang Liguo, et al. Materials, 2020, 13(14), 3148.
13 He Yuan, Yuan Xizhong. Arabian Journal for Science and Engineering, 2020, 45(3), 3559.
14 Wang Y H, Chu Q, Han Q. Journal of Building Materials, 2021, 24(1), 191(in Chinese).
王尧鸿, 楚奇, 韩青. 建筑材料学报, 2021, 24(1), 191.
15 Xue H J, Shen X D, Zou C X, et al. Journal of Building Materials, 2019, 22(2), 199(in Chinese).
薛慧君, 申向东, 邹春霞, 等.建筑材料学报, 2019, 22(2), 199.
16 Huang S G, Chen J J, Wang J X, et al. Materials Reports B: Research Papers, 2020, 34(12), 24045(in Chinese).
黄守刚,陈进杰,王建西,等.材料导报:研究篇, 2020, 34(12), 24045.
17 Zhao H J, Zhu Y C, Ye J K, et al. Low Temperature Construction Technology, 2016, 38(9), 3(in Chinese).
赵海军,朱亚冲,叶金库,等.低温建筑技术,2016,38(9), 3.
18 Wang W Z, Jiang Y C, Yue H W. China Building Materials Science and Technology, 2020, 29(5) , 57(in Chinese).
王文卓,蒋玉川,岳汉威. 中国建材科技,2020,29(5),57.
19 Hu Y Q, Li S X, Zhong C C, et al. Comprehensive Utilization of Fly Ash, 2018(1), 23(in Chinese).
胡怡强, 李双喜, 仲从春, 等. 粉煤灰综合利用, 2018(1), 23.
20 Li W, Lu J Y, Liu H, et al. Concrete, 2016(8), 103(in Chinese).
李炜, 陆加越, 刘浩, 等. 混凝土, 2016(8), 103.
21 Wu J C, Shen X D. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10), 184(in Chinese).
吴俊臣, 申向东.农业工程学报, 2017, 33(10), 184.
22 Dong Wei, Shen Xiangdong, Xue Huijun, et al. Construction and Buil-ding Materials, 2016, 123, 792.
23 混凝土物理力学性能试验方法标准:GB/T 50081-2019,中国建筑工业出版社,2019.
24 Wang Qicai, Zhang Kai, Wang Qingshi. Materials Reports B:Research Papers, 2015, 29(7), 131(in Chinese).
王起才, 张凯, 王庆石.材料导报:研究篇, 2015, 29(7), 131.
25 Guo Z L. Study on the pore structure and mechanical properties of basalt fiber reinforced concrete under single-sided freeze-thaw conditions. Master's Thesis, Inner Mongolia University of Technology, China, 2018(in Chinese) .
郭子麟. 单面冻融条件下玄武岩纤维混凝土孔结构及力学性能研究.硕士学位论文,内蒙古工业大学, 2018.
26 Powers T C, Helmuth R A. High-way Res Board Proceed, 1953, 32,285.
27 Choi P, Yeon J H, Yun K K. Cement and Concrete Composites, 2016, 70(1), 69.
28 Pigeon M, Pleau R. Durability of Concrete in Cold Climates. E & FN Spon,US,1995,pp.47.
29 Deng J L. Systems & Control Letters. 1982, 1(5), 288.
30 Yu X D, Kang Z H, Zhou L, et al. Coal Technology, 2018, 37(5), 129(in Chinese).
余旭东, 康志宏, 周磊, 等. 煤炭技术, 2018, 37(5), 129.
31 Wang Junlei, Wei Yunsheng, Qi Yadong. Transport in Porous Media, 2016, 112(3), 707.
32 Zhi J S, Qiong G, Yi Q X,et al. Bioresource Technology, 2017, 244(1), 117.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[3] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[4] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[5] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[6] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[7] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[8] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[9] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[10] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[11] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[12] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[13] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[14] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[15] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed