Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20110208-6    https://doi.org/10.11896/cldb.20110208
  金属与金属基复合材料 |
基于电磁热耦合的感应加热65Mn带钢有限元仿真
张鹏飞1,2, 王德成1, 程鹏1, 邵晨曦1
1 中国机械科学研究总院中机生产力促进中心,北京 100044
2 北京科技大学材料科学与工程学院,北京 100083
Finite Element Simulation of Induction Heating 65Mn Tape-steel Based on Electromagnetic Thermal Coupling
ZHANG Pengfei1,2, WANG Decheng1, CHENG Peng1, SHAO Chenxi1
1 China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 6609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电磁感应加热是涉及磁场、电场、温度场、相变和应力应变的过程,在整个电磁感应过程中交变电流产生电磁场,电磁场会影响交变的电场,具有加热效率高、可自动控制、环境污染小和加热周期短等优点。根据麦克斯韦方程组和温度微分方程,建立电磁场与温度场耦合的有限元数学模型,利用有限元软件Maxwell 3D建立横截面为3 mm×12 mm的65Mn带钢电磁热耦合数学模型,分析电流频率、交变电流和位置对带钢的磁场强度、磁通量密度、电流密度和温度场的影响规律。研究发现,随着电磁感应线圈电流频率和交变电流的增大,感应加热65Mn带钢的磁场强度、磁通量密度、电流密度和温度场也进一步增大,且带钢上部和下部的磁场强度、磁通量密度、电流密度较中部大。同时,采用电磁感应加热设备对65Mn带钢进行试验,研究了电磁感应加热带钢芯部和表面的温度变化、带钢横截面的微观组织变化和硬度变化。结果表明,在相同电流频率、不同交变电流下,电流透入深度基本不变,约为115 μm,这是因为电流透入深度只与电流频率、导体磁导率和电阻率有关。当感应线圈交变电流为210 A时,感应加热后65Mn带钢部分被奥氏体化,集肤效应区域硬度较低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏飞
王德成
程鹏
邵晨曦
关键词:  65Mn带钢  感应加热  电磁热  有限元仿真  微观组织    
Abstract: Electromagnetic induction heating is an electromagnetic field produced by alternating current, and alternating magnetic field can cause alternating electric field. Electromagnetic induction heating is a complex process involving electric field, magnetic field, temperature field, stress strain and phase transition. It has the advantages of high heating efficiency, automatic control, less environmental pollution and shorter heating period. According to Maxwell's equations and temperature differential equations, the finite element mathematical model of electromagnetic field and temperature field coupling was established. The electromagnetic and thermal coupling mathematical model of 65Mn tape-steel with a cross section of 3 mm×12 mm was established by using finite element software Maxwell 3D. The influences of magnetic field intensity, magnetic flux density, current density and temperature field at different current frequencies, alternating current and different positions of tape-steel were analyzed. It is found that the magnetic field intensity, magnetic flux density, current density and temperature field of inductively heated 65Mn tape-steel are further increased with the increase of the current frequency and alternating current of the electromagnetic induction coil, and the magnetic field intensity, magnetic flux density and current density of the upper and lower parts of the tape-steel are larger than those of the middle part. At the same time, the electromagnetic induction heating equipment was used to experiment the 65Mn tape-steel, studying the temperature changes of the core and surface of the steel, as well as the microstructure changes of the cross section of the tape-steel and the microhardness curve. The results show that under the same current frequency and different alternating current, the current penetration depth is about 115 μm, which is basically unchanged, because the current penetration depth is only related to the current frequency, conductor permeability and resistivity. When the alternating current of the induction coil is 210 A, the 65Mn tape-steel is partly austenitized after induction heating, and the microhardness in the skin effect area is low.
Key words:  65Mn tape-steel    induction heating    electromagnetic heat    finite element simulation    microstructure
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TG113  
  TG161  
基金资助: 国家科技重大专项(2019ZX04004-001;2018ZX04020001)
通讯作者:  wangdc@cam.com.cn   
作者简介:  张鹏飞,2018年硕士毕业于中北大学,同年进入北京科技大学材料科学与工程专业攻读博士学位,已发表SCI、EI论文10余篇。研究方向为轻合金材料成形。
王德成,中国机械科学研究总院正高级工程师、博士研究生导师,毕业于机械科学研究总院,发表论文30余篇。主要从事机械可靠性工程、自动检测技术和轻合金材料成形研究。
引用本文:    
张鹏飞, 王德成, 程鹏, 邵晨曦. 基于电磁热耦合的感应加热65Mn带钢有限元仿真[J]. 材料导报, 2022, 36(12): 20110208-6.
ZHANG Pengfei, WANG Decheng, CHENG Peng, SHAO Chenxi. Finite Element Simulation of Induction Heating 65Mn Tape-steel Based on Electromagnetic Thermal Coupling. Materials Reports, 2022, 36(12): 20110208-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110208  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20110208
1 Li Y H, Su X J, Chen G, et al. Material Science Technology, 2013, 21(5), 82(in Chinese).
李红英, 苏雄杰, 陈广, 等. 材料科学与工艺, 2013, 21(5), 82.
2 Wang Y J , Sun J J, Jiang T, et al. Materials Science and Engineering A, 2019, 754, 1.
3 Wang Y Z, Zhang N, Zhang X M, Heat Treatment Technology and Equipment, 2020, 41(3), 38(in Chinese).
王意忠, 张纳, 张先鸣. 热处理技术与装备, 2020, 41(3), 38.
4 Zhang Y H, Liu H H, Wang D C. Tanhuang shouce, China Machine Press, 2017,pp. 103(in Chinese).
张英会, 刘辉航, 王德成. 弹簧手册, 机械工业出版社, 2017.pp.103.
5 Hu J J, Zhang Y Q, Guo N, et al. Materials Reports A: Review Papers, 2019, 33 (11), 3552(in Chinese).
胡建军, 张雨晴, 郭 宁, 等. 材料导报:综述篇, 2019, 33 (11), 3552.
6 Han S. Design of inner-hole induction heater and its numerical study on the effect of temperature field on heating of large-scale cylinders. Master's Thesis, Qingdao University of Science and Technology, China, 2018 (in Chinese).
韩硕. 内孔感应加热器的设计及其对大型筒体加热温度场影响的数值研究. 硕士学位论文, 青岛科技大学, 2018.
7 Dong X G. A study of steam turbine rotor local heating straightening process by ANSYS. Master's Thesis, Tianjin University, China, 2015(in Chinese).
董鑫刚. 基于ANSYS的汽轮机转子局部加热矫直工艺研究. 硕士学位论文, 天津大学, 2015.
8 Sun R, Shi Y J, Bing Z F, et al. Applied Thermal Engineering, 2019, 149, 731.
9 Fu X B. Research on the deformation and microstructure evlution of large-modulus gear using cross rolling with high frequency induction heating process. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
付晓斌. 基于高频感应加热的大模数齿轮轧制成形及微观组织研究. 博士学位论文, 北京科技大学, 2018.
10 Tong D M, Gu J F, Yang F. Journal of Materials Processing Technology,2018, 262, 277.
11 Gao K, Qin X P, Wang Z, et. al. Journal of Materials Processing Technology, 2014, 214(11), 2425.
12 Bayerl T, Duhovic M, Mitschang P, et al. Composites Part A, 2014, 57, 27.
13 Peng X F. Research and application on local heating roll forming technology of high strength steel. Ph.D. Thesis, University of Science and Techno-logy Beijing, China, 2018 (in Chinese).
彭雪锋. 高强钢局部加热辊压成形技术研究与应用. 博士学位论文, 北京科技大学, 2018.
14 Stachowicz F, Trzepiecinski T. Archives of Civil & Mechanical Enginee-ring, 2010, 10(4), 85.
15 Bayerl T, Duhovic M, Mitschang P, et al. Composites: Part A: Applied Science and Manufacturing, 2014, 57, 27.
16 Yin Y Y, Yu J W, Wang Y G, et al. China Mechanical Engineering, 2011, 22(5), 611(in Chinese).
尹延国, 俞建卫, 王永国, 等. 中国机械工程, 2011, 22(5), 611.
17 Su L, Zhang C B, Wang Z, et al. Materials Reports B: Research Papers, 2017, 31(12), 182(in Chinese).
苏岚, 张楚博, 汪振, 等. 材料导报:研究篇, 2017, 31(12), 182.
18 Kocich R. International Journal of Refractory Metals & Hard Materials, 2020, 93, 105353.
19 Yo H K, Tae H S, Jae-ha M. Ceramics International, 2020, 46(15), 23636.
20 Kranjc M, Zupanic A, Miklavcic D. International Journal of Heat and Mass Transfer, 2010, 53(17-18), 3585.
21 Tan Y Z, Chandrakant S P, Ang J S T, et al. Journal of Membrane Science, 2020, 606, 118150.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[6] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[7] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[8] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[9] 刘沁钰, 周利, 戎校宇, 杨海峰, 赵洪运. 镁锂合金焊接技术研究现状[J]. 材料导报, 2022, 36(10): 20080079-10.
[10] 刘腾, 朱政强, 吴蔺峰. 中锰TRIP钢电阻点焊研究进展与展望[J]. 材料导报, 2022, 36(10): 20080023-7.
[11] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[12] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[13] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[14] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[15] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed