Research Progress in High Pressure on Tuning the Structural and Physical Properties of Ferroelectric Materials
GUAN Jiayi1,2, ZHANG Ganghua2, ZENG Tao2, BAI Jianfeng1, GU Weihua1
1 School of Environmental and Materials Engineering,Shanghai Polytechnic University, Shanghai 201209, China 2 Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials, Shanghai 200437, China
Abstract: Ferroelectric materials are an important class of functional materials with spontaneous polarization in a certain temperature range. Their spontaneous polarization can be reversed by an external electric field, and they have a wide application potential in electronic devices such as photovoltaic regulators and storage. At present, the development of ferroelectric materials for applications is severely constrained by their high resistance and low carrier concentration, so there is an urgent need to find a simple and effective method to optimize the ferroelectric properties and other physical properties of ferroelectric materials. Pressure control is an effective means to modulate the crystal structure and electronic configuration and regulate the physical properties of materials. Lower pressure can affect the balance between long-range Coulomb attraction and short-range electron repulsion in ferroelectrics, resulting in an obvious increase in short-range repulsion and a decrease in ferroelectricity. However, once the critical pressure is reached, the ferroelectricity begins to increase, and the ferroelectric phase transition occurs, thus changing the physical properties of materials. In recent years, the research on the structure and physical properties of ferroelectric materials regulated by pressure at home and abroad mainly focuses on exploring ferroelectric phase transition and other physical properties of materials caused by pressure, and exploring its internal influence mechanism. As an important dimension to adjust and control the structure of ferroelectric crystals, pressure can replace doping to study the ferroelectric phase transition to some extent, and it can also stabilize the phase transition temperature. The improvement of dielectric and ferroelectric properties of materials due to domain wall change and de-aging process caused by high pressure can make the materials well applied in device equipment. Pressure can modulate the relaxation behavior of ferroelectric materials by affecting the polar nano-domains, and it can also change the magnetic sequence or symmetry of the magnetoelectric coupling material to change its ferroelectric properties. The synchronous enhancement of ferroelectric, electric transport and photoelectric properties can be realized in the high pressure phase of ferroelectric photovoltaic materials, relative to those in the low pressure phase, and the mechanism of ferroelectric photovoltaic can be further explored by means of high pressure. This review summarizes the high pressure research progress of ferroelectric materials at home and abroad, discusses the structural evolution of ferroelectric materials under high pressure and its occurrence mechanism, and the influence of high pressure conditions on ferroelectric properties, dielectric properties, relaxation behavior, magnetoelectric coupling and photovoltaic properties of ferroelectric materials is introduced. These provide new ideas for the research and design of new high-performance ferroelectric materials using high pressure technology.
作者简介: 关嘉怡,2018年6月毕业于河南科技大学,获得理学学士学位。现为上海第二工业大学环境与材料工程学院硕士研究生,在曾涛教授的指导下进行研究。目前主要研究领域为无机光电材料。 曾涛,1999年于东南大学获学士学位,2004年于东南大学获得工学硕士学位,2007年于上海硅酸盐所获工学博士学位。2007年9月,韩国浦项工业大学博士后,2007年12月担任TDK新科技术研究开发公司研发经理,2008年10月在英国伦敦大学玛丽女王学院从事高温压电材料的研究工作。2010年10月任上海电力学院副教授,2016年任上海材料研究所压电材料及器件中心主任,2018年4月兼任上海市工程材料应用与评价重点实验室常务副主任。先后承担上海军民融合专项,工程物理研究院国防重点实验室专项,兵器工业集团协同创新基金等近20项科研项目。已以第一作者或通讯作者在Chemical Communications, Inorganic Chemistry, Journal of Applied Physics, Journal of the American Ceramic Society, Scripta Materialia, Journal of the European Ceramic Society上累计发表SCI论文近30篇。申请专利11项,授权专利五项。
引用本文:
关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
GUAN Jiayi, ZHANG Ganghua, ZENG Tao, BAI Jianfeng, GU Weihua. Research Progress in High Pressure on Tuning the Structural and Physical Properties of Ferroelectric Materials. Materials Reports, 2022, 36(12): 20110057-8.
1 Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials, Oxford University Press, Oxford, UK, 1977. 2 Scott J F. Science, 2007, 315(5814), 954. 3 Valasek J. Physical Review, 1921, 17(4), 475. 4 Wang J, Neaton J B, Zheng H, et al. Cheminform, 2003, 34(24), 1719. 5 Choi T, Lee S, Choi Y J, et al. Science, 2009, 324(5923), 63. 6 Shaw C P, Gupta S, Stringfellow S B, et al. Journal of the European Ceramic Society, 2002, 22(13), 2123. 7 Wei H, Chen Y. Ceramics International, 2015, 41(5), 6158. 8 Goel T C, Pillai P K C, Sharma H D, et al. In: Proceedings of 8th International Symposium on Electrets (ISE 8). Paris, France, 1994, pp. 720. 9 Hameer S, Van Niekerk J L. International Journal of Energy Research, 2015, 39(9), 1179. 10 Bahl C R H, Hansen M F, Pedersen T, et al. Journal of Physics Condensed Matter, 2006, 18(17), 4161. 11 Seidel J, Fu D, Yang S Y, et al. Physical Review Letters, 2011, 107(12),126805. 12 Grinberg I, West D V, Torres M, et al. Nature, 2013, 503(7477), 509. 13 Patel S, Chauhan A, Vaish R. Journal of Applied Physics, 2015, 117(8), 084102.1. 14 Chauhan A, Patel S, Vaish R. AIP Advances, 2014, 4(8), 37. 15 Sanjurjo J A, López-Cruz E, Burns G. Physical Review B, 1983, 28(12), 7260. 16 Ding P, Pan X H, Ye Z Z. Journal of Chongqing University of Technology(Natural Science), 2010, 24(5), 50 (in Chinese). 丁萍,潘新花,叶志镇. 重庆理工大学学报(自然科学版), 2010, 24(5), 50. 17 Sanjurjo J A, López-cruz E, Burns G. Physical Review B, 1983, 28(12), 7260. 18 Kornev I A, Bellaiche L, Bouvier P, et al. Physical Review Letters, 2005, 95(19), 196804. 19 Bousquet E, Ghosez P. Physical Review B, 2006, 74(18), 180101.1. 20 Kornev I A, Bellaiche L. Phase Transitions, 2007, 80(4-5), 385. 21 Maczka M, Paraguassu W, Freire P T C, et al. Physical Review B, 2010, 82, 014106. 22 Ruiz-fuertes J, Winkler B, Bernert T, et al. Physical Review B, 2015, 91, 214110. 23 Kaczkowski J. Journal of Physics and Chemistry of Solids, 2019,134, 225. 24 Jaykhedkar N, Tripathy N, Shah V, et al. Materials Chemistry and Phy-sics, 2020, 254(6), 123545. 25 Bancroft D. Physical Review, 1938, 53(7), 587. 26 Samara G A, Sakudo T, Yoshimitsu K. Physical Review Letters, 1975, 35(26), 1767. 27 Jabarova S G, Kozlenkoa D P, Kichanova S E, et al. Physics of the Solid State, 2011, 53(11), 2300. 28 Xue F, Liang L, Gu Y, et al. Applied Physics Letters, 2015, 106 (1), 116. 29 Olejniczak A, Szafranski M, Katrusiak A. Crystal Growth & Design, 2018, 18(11), 6488. 30 Gourdain D, Pruzan P H, Besson J M, et al. Physical Review B, 2002, 65(5), 054104. 31 Pruzan P H, Gourdain D, Chervin J C, et al. Solid State Communications, 2002, 123(1), 21. 32 Ishidate T, Abe S, Takahashi H. Physical Review Letters, 1997, 78(12), 2397. 33 Sani A, Levy D. Journal of Physics: Condensed Matter, 2002, 14, 10601. 34 Kornev I A, Bellaiche L, Bouvier P, et al. Physical Review Letters, 2005, 95(19), 196804. 35 Seo Y S, Ahn J S. Physical Review B, 2013, 88(1), 14114. 36 Basu A, Jana R, Ranjan R, et al. Physical Review B, 2016, 93(21), 214114. 37 Singh P, Upadhyay C, Zuzana K, et al. Physical Review Materials, 2019, 3(9), 94405. 38 Ding R, Zhang X, Sun X W. Advanced Functional Materials, 2017, 27(43), 1702207.1. 39 Aoyama T, Yamauchi K, Iyama A, et al. Nature Communications, 2014, 5, 4927. 40 Terada N, Khalyavin D D, Manuel P, et al. 2016, 93(8), 081104.1. 41 Wu Z, Cohen R. Physical Review Letters, 2005,95, 037601. 42 Sophia G, Baranek P, Sarrazin C, et al. Phase Transitions, 2013, 86(11), 1069. 43 Karpierz M, Suchanicz J, Bujakiewicz-koronska R, et al. Phase Transitions, 2015, 88(8), 811. 44 Coak M J, Haines C, Liu C, et al. Scientific Reports, 2018, 8(1), 14936. 45 Dul'kin E, Mihailova B, Catalan M, et al. Physical Review B. 2010, 82, 180101(R)-1. 46 Bursill L A, Peng J, Hua Q, et al. Physical Review B, 1995, 205(3-4), 305. 47 Blinc R, Gregorovi A, Zalar B, et al. Physical Review B, 2000, 61(1), 253. 48 Bokov A A, Ye Z G. Journal of Materials Science, 2006, 41(1), 31. 49 Samara G A. Journal of Physics: Condensed Matter, 2003, 15, R367. 50 Gao J, Xu Z, Zhang C, et al. Ferroelectrics, 2010, 401(1), 86. 51 Mihailova B, Waeselmann N, Maier B J, et al. High Pressure Research, 2013, 33(3), 1. 52 Peng P, Nie H, Guo W, et al. Journal of the American Ceramic Society, 2019, 102, 2569. 53 Cheong S W, Mostovoy M. Nature Materials, 2007, 6(1), 13. 54 Aimi A, Katsumata T, Mori D, et al. Inorganic Chemistry, 2011, 50, 6392. 55 Caignaert V, Maignan A, Singh K, et al. Physical Review B, 2013, 88(17), 174403. 56 Tokunaga Y, Iguchi S, Arima T, et al. Physical Review Letters, 2008, 101(9), 097205. 57 Ruiz-fuertes J, Friedrich A, Gomis O, et al. Physical Review B, 2015, 91(10), 104109.1. 58 Zhai K, Su N, Sun J, et al. Journal of Materials Chemistry C, 2019, 7, 4173. 59 Yin L H, Jang D H, Park C B, et al. Journal of Applied Physics, 2016, 119, 104101. 60 Ding L J, Zhong Y. Physical Chemistry Chemical Physics, 2020, 22, 19120. 61 Arizmendi L. Physica Status Solidi(a), 2004, 201(2), 253. 62 Grinberg I, West D V, Torres M, et al. Nature, 2013, 503(7477), 509. 63 Choi T, Lee S, Choi Y J, et al. Science, 2009, 324(5923), 63. 64 Brody P S, Crowne F. Journal of Electronic Materials, 1975, 4(5), 955. 65 Yuan Y, Xiao Z, Yang B, et al. Journal of Materials Chemistry A, 2014, 2(17), 6027. 66 Yi H T, Choi T, Choi S G, et al. Advanced Materials, 2011, 23(30), 3403. 67 Basu S R, Martin L W, Chu Y H, et al. Applied Physics Letters, 2008, 92(9), 91905. 68 Fridkin V M. Crystallography Reports, 2001, 46(4), 654. 69 Yuan Y, Xiao Z, Yang B, et al. Journal of Materials Chemistry A, 2014, 2(17), 6027. 70 Dhar A, Mansingh A. Journal of Applied Physics, 1990, 68(11), 5804. 71 Wemple S H. Physical Review B, 1970, 2(7), 2679. 72 Scott J F. Japanese Journal of Applied Physics, 1999, 38(4), 2272. 73 Zhang G H, Liu F L, Gu T T, et al. Advanced Electronic Materials, 2017, 3(3), 1600498. 74 Ruiz-Fuertes J, Gomis O, Segura A, et al. Applied Physics Letters, 2018, 112(4), 042901.