Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20110057-8    https://doi.org/10.11896/cldb.20110057
  无机非金属及其复合材料 |
利用高压手段调控铁电材料结构与性能的研究进展
关嘉怡1,2, 张刚华2, 曾涛2, 白建峰1, 顾卫华1
1 上海第二工业大学环境与材料工程学院,上海 201209
2 上海材料研究所,上海市工程材料应用与评价重点实验室,上海 200437
Research Progress in High Pressure on Tuning the Structural and Physical Properties of Ferroelectric Materials
GUAN Jiayi1,2, ZHANG Ganghua2, ZENG Tao2, BAI Jianfeng1, GU Weihua1
1 School of Environmental and Materials Engineering,Shanghai Polytechnic University, Shanghai 201209, China
2 Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials, Shanghai 200437, China
下载:  全 文 ( PDF ) ( 5497KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁电材料是在一定温度范围内可自发极化的一类重要的功能材料,其自发极化能够通过外加电场进行逆转,在光电调节器和储存器等电子器件中有着极大的应用潜力。目前,由于铁电材料电阻高、载流子浓度低等特点,其应用发展被严重制约。因此,亟需找到一种简单有效的方法来优化铁电材料的铁电性能及其他物理性能。调控压力是调控晶体结构、电子构型和调节材料物理性能的有效手段。较低的压力会影响铁电体内部长程库仑引力和短程电子斥力之间的平衡,导致短程斥力明显增加,铁电性降低。而一旦达到较高的临界压力,材料铁电性就开始增大,并发生铁电相变,其物理性能也会因此发生改变。近年来,国内外对压力调控铁电材料结构和物理性能的研究主要集中在使用压力探究铁电相变及其引起的材料其他物理性能的改变上,并探究其内在影响机制。
压力作为调节铁电晶体结构和性能的一个重要因素,可以在一定程度上替代掺杂调控晶体的铁电相变,且相变温度受压力的影响非常小,压力引起的畴壁变化和去老化过程可以改善材料介电和铁电性质,实现其在器件设备中的良好应用;压力可以通过影响弛豫铁电体中的极性纳米畴调节铁电材料的弛豫行为,同时能够改变磁电耦合材料的磁序或对称性,从而改变其铁电性质;在铁电光伏材料的高压相中还可以实现相对于低压相的铁电性、电输运性质和光电性质的同步增强,且利用高压手段还可以进一步探究铁电光伏机理。
本文综合国内外铁电材料的高压研究进展,论述了铁电材料在高压条件下的结构演变规律及其发生机制,介绍了高压条件对铁电材料铁电性能、介电性能、弛豫行为、磁电耦合及光伏性能的影响,为利用高压技术研究设计新型高性能铁电材料提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关嘉怡
张刚华
曾涛
白建峰
顾卫华
关键词:  高压  铁电材料  相变  介电性能    
Abstract: Ferroelectric materials are an important class of functional materials with spontaneous polarization in a certain temperature range. Their spontaneous polarization can be reversed by an external electric field, and they have a wide application potential in electronic devices such as photovoltaic regulators and storage. At present, the development of ferroelectric materials for applications is severely constrained by their high resistance and low carrier concentration, so there is an urgent need to find a simple and effective method to optimize the ferroelectric properties and other physical properties of ferroelectric materials. Pressure control is an effective means to modulate the crystal structure and electronic configuration and regulate the physical properties of materials. Lower pressure can affect the balance between long-range Coulomb attraction and short-range electron repulsion in ferroelectrics, resulting in an obvious increase in short-range repulsion and a decrease in ferroelectricity. However, once the critical pressure is reached, the ferroelectricity begins to increase, and the ferroelectric phase transition occurs, thus changing the physical properties of materials. In recent years, the research on the structure and physical properties of ferroelectric materials regulated by pressure at home and abroad mainly focuses on exploring ferroelectric phase transition and other physical properties of materials caused by pressure, and exploring its internal influence mechanism.
As an important dimension to adjust and control the structure of ferroelectric crystals, pressure can replace doping to study the ferroelectric phase transition to some extent, and it can also stabilize the phase transition temperature. The improvement of dielectric and ferroelectric properties of materials due to domain wall change and de-aging process caused by high pressure can make the materials well applied in device equipment. Pressure can modulate the relaxation behavior of ferroelectric materials by affecting the polar nano-domains, and it can also change the magnetic sequence or symmetry of the magnetoelectric coupling material to change its ferroelectric properties. The synchronous enhancement of ferroelectric, electric transport and photoelectric properties can be realized in the high pressure phase of ferroelectric photovoltaic materials, relative to those in the low pressure phase, and the mechanism of ferroelectric photovoltaic can be further explored by means of high pressure.
This review summarizes the high pressure research progress of ferroelectric materials at home and abroad, discusses the structural evolution of ferroelectric materials under high pressure and its occurrence mechanism, and the influence of high pressure conditions on ferroelectric properties, dielectric properties, relaxation behavior, magnetoelectric coupling and photovoltaic properties of ferroelectric materials is introduced. These provide new ideas for the research and design of new high-performance ferroelectric materials using high pressure technology.
Key words:  high pressure    ferroelectric materials    phase transition    dielectric property
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TN321  
基金资助: 上海市“科技创新行动计划”自然科学基金(21ZR1421800)
通讯作者:  zengtao@srim.com.cn   
作者简介:  关嘉怡,2018年6月毕业于河南科技大学,获得理学学士学位。现为上海第二工业大学环境与材料工程学院硕士研究生,在曾涛教授的指导下进行研究。目前主要研究领域为无机光电材料。
曾涛,1999年于东南大学获学士学位,2004年于东南大学获得工学硕士学位,2007年于上海硅酸盐所获工学博士学位。2007年9月,韩国浦项工业大学博士后,2007年12月担任TDK新科技术研究开发公司研发经理,2008年10月在英国伦敦大学玛丽女王学院从事高温压电材料的研究工作。2010年10月任上海电力学院副教授,2016年任上海材料研究所压电材料及器件中心主任,2018年4月兼任上海市工程材料应用与评价重点实验室常务副主任。先后承担上海军民融合专项,工程物理研究院国防重点实验室专项,兵器工业集团协同创新基金等近20项科研项目。已以第一作者或通讯作者在Chemical Communications, Inorganic Chemistry, Journal of Applied Physics, Journal of the American Ceramic Society, Scripta Materialia, Journal of the European Ceramic Society上累计发表SCI论文近30篇。申请专利11项,授权专利五项。
引用本文:    
关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
GUAN Jiayi, ZHANG Ganghua, ZENG Tao, BAI Jianfeng, GU Weihua. Research Progress in High Pressure on Tuning the Structural and Physical Properties of Ferroelectric Materials. Materials Reports, 2022, 36(12): 20110057-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110057  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20110057
1 Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials, Oxford University Press, Oxford, UK, 1977.
2 Scott J F. Science, 2007, 315(5814), 954.
3 Valasek J. Physical Review, 1921, 17(4), 475.
4 Wang J, Neaton J B, Zheng H, et al. Cheminform, 2003, 34(24), 1719.
5 Choi T, Lee S, Choi Y J, et al. Science, 2009, 324(5923), 63.
6 Shaw C P, Gupta S, Stringfellow S B, et al. Journal of the European Ceramic Society, 2002, 22(13), 2123.
7 Wei H, Chen Y. Ceramics International, 2015, 41(5), 6158.
8 Goel T C, Pillai P K C, Sharma H D, et al. In: Proceedings of 8th International Symposium on Electrets (ISE 8). Paris, France, 1994, pp. 720.
9 Hameer S, Van Niekerk J L. International Journal of Energy Research, 2015, 39(9), 1179.
10 Bahl C R H, Hansen M F, Pedersen T, et al. Journal of Physics Condensed Matter, 2006, 18(17), 4161.
11 Seidel J, Fu D, Yang S Y, et al. Physical Review Letters, 2011, 107(12),126805.
12 Grinberg I, West D V, Torres M, et al. Nature, 2013, 503(7477), 509.
13 Patel S, Chauhan A, Vaish R. Journal of Applied Physics, 2015, 117(8), 084102.1.
14 Chauhan A, Patel S, Vaish R. AIP Advances, 2014, 4(8), 37.
15 Sanjurjo J A, López-Cruz E, Burns G. Physical Review B, 1983, 28(12), 7260.
16 Ding P, Pan X H, Ye Z Z. Journal of Chongqing University of Technology(Natural Science), 2010, 24(5), 50 (in Chinese).
丁萍,潘新花,叶志镇. 重庆理工大学学报(自然科学版), 2010, 24(5), 50.
17 Sanjurjo J A, López-cruz E, Burns G. Physical Review B, 1983, 28(12), 7260.
18 Kornev I A, Bellaiche L, Bouvier P, et al. Physical Review Letters, 2005, 95(19), 196804.
19 Bousquet E, Ghosez P. Physical Review B, 2006, 74(18), 180101.1.
20 Kornev I A, Bellaiche L. Phase Transitions, 2007, 80(4-5), 385.
21 Maczka M, Paraguassu W, Freire P T C, et al. Physical Review B, 2010, 82, 014106.
22 Ruiz-fuertes J, Winkler B, Bernert T, et al. Physical Review B, 2015, 91, 214110.
23 Kaczkowski J. Journal of Physics and Chemistry of Solids, 2019,134, 225.
24 Jaykhedkar N, Tripathy N, Shah V, et al. Materials Chemistry and Phy-sics, 2020, 254(6), 123545.
25 Bancroft D. Physical Review, 1938, 53(7), 587.
26 Samara G A, Sakudo T, Yoshimitsu K. Physical Review Letters, 1975, 35(26), 1767.
27 Jabarova S G, Kozlenkoa D P, Kichanova S E, et al. Physics of the Solid State, 2011, 53(11), 2300.
28 Xue F, Liang L, Gu Y, et al. Applied Physics Letters, 2015, 106 (1), 116.
29 Olejniczak A, Szafranski M, Katrusiak A. Crystal Growth & Design, 2018, 18(11), 6488.
30 Gourdain D, Pruzan P H, Besson J M, et al. Physical Review B, 2002, 65(5), 054104.
31 Pruzan P H, Gourdain D, Chervin J C, et al. Solid State Communications, 2002, 123(1), 21.
32 Ishidate T, Abe S, Takahashi H. Physical Review Letters, 1997, 78(12), 2397.
33 Sani A, Levy D. Journal of Physics: Condensed Matter, 2002, 14, 10601.
34 Kornev I A, Bellaiche L, Bouvier P, et al. Physical Review Letters, 2005, 95(19), 196804.
35 Seo Y S, Ahn J S. Physical Review B, 2013, 88(1), 14114.
36 Basu A, Jana R, Ranjan R, et al. Physical Review B, 2016, 93(21), 214114.
37 Singh P, Upadhyay C, Zuzana K, et al. Physical Review Materials, 2019, 3(9), 94405.
38 Ding R, Zhang X, Sun X W. Advanced Functional Materials, 2017, 27(43), 1702207.1.
39 Aoyama T, Yamauchi K, Iyama A, et al. Nature Communications, 2014, 5, 4927.
40 Terada N, Khalyavin D D, Manuel P, et al. 2016, 93(8), 081104.1.
41 Wu Z, Cohen R. Physical Review Letters, 2005,95, 037601.
42 Sophia G, Baranek P, Sarrazin C, et al. Phase Transitions, 2013, 86(11), 1069.
43 Karpierz M, Suchanicz J, Bujakiewicz-koronska R, et al. Phase Transitions, 2015, 88(8), 811.
44 Coak M J, Haines C, Liu C, et al. Scientific Reports, 2018, 8(1), 14936.
45 Dul'kin E, Mihailova B, Catalan M, et al. Physical Review B. 2010, 82, 180101(R)-1.
46 Bursill L A, Peng J, Hua Q, et al. Physical Review B, 1995, 205(3-4), 305.
47 Blinc R, Gregorovi A, Zalar B, et al. Physical Review B, 2000, 61(1), 253.
48 Bokov A A, Ye Z G. Journal of Materials Science, 2006, 41(1), 31.
49 Samara G A. Journal of Physics: Condensed Matter, 2003, 15, R367.
50 Gao J, Xu Z, Zhang C, et al. Ferroelectrics, 2010, 401(1), 86.
51 Mihailova B, Waeselmann N, Maier B J, et al. High Pressure Research, 2013, 33(3), 1.
52 Peng P, Nie H, Guo W, et al. Journal of the American Ceramic Society, 2019, 102, 2569.
53 Cheong S W, Mostovoy M. Nature Materials, 2007, 6(1), 13.
54 Aimi A, Katsumata T, Mori D, et al. Inorganic Chemistry, 2011, 50, 6392.
55 Caignaert V, Maignan A, Singh K, et al. Physical Review B, 2013, 88(17), 174403.
56 Tokunaga Y, Iguchi S, Arima T, et al. Physical Review Letters, 2008, 101(9), 097205.
57 Ruiz-fuertes J, Friedrich A, Gomis O, et al. Physical Review B, 2015, 91(10), 104109.1.
58 Zhai K, Su N, Sun J, et al. Journal of Materials Chemistry C, 2019, 7, 4173.
59 Yin L H, Jang D H, Park C B, et al. Journal of Applied Physics, 2016, 119, 104101.
60 Ding L J, Zhong Y. Physical Chemistry Chemical Physics, 2020, 22, 19120.
61 Arizmendi L. Physica Status Solidi(a), 2004, 201(2), 253.
62 Grinberg I, West D V, Torres M, et al. Nature, 2013, 503(7477), 509.
63 Choi T, Lee S, Choi Y J, et al. Science, 2009, 324(5923), 63.
64 Brody P S, Crowne F. Journal of Electronic Materials, 1975, 4(5), 955.
65 Yuan Y, Xiao Z, Yang B, et al. Journal of Materials Chemistry A, 2014, 2(17), 6027.
66 Yi H T, Choi T, Choi S G, et al. Advanced Materials, 2011, 23(30), 3403.
67 Basu S R, Martin L W, Chu Y H, et al. Applied Physics Letters, 2008, 92(9), 91905.
68 Fridkin V M. Crystallography Reports, 2001, 46(4), 654.
69 Yuan Y, Xiao Z, Yang B, et al. Journal of Materials Chemistry A, 2014, 2(17), 6027.
70 Dhar A, Mansingh A. Journal of Applied Physics, 1990, 68(11), 5804.
71 Wemple S H. Physical Review B, 1970, 2(7), 2679.
72 Scott J F. Japanese Journal of Applied Physics, 1999, 38(4), 2272.
73 Zhang G H, Liu F L, Gu T T, et al. Advanced Electronic Materials, 2017, 3(3), 1600498.
74 Ruiz-Fuertes J, Gomis O, Segura A, et al. Applied Physics Letters, 2018, 112(4), 042901.
[1] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[2] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[3] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[4] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[5] 何东昱, 马国政, 邢志国, 王海斗. 铁电材料表面电畴结构的压电力显微镜表征研究进展[J]. 材料导报, 2022, 36(7): 21120259-21.
[6] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[7] 李天天, 李宝让, 刘文洁, 赵鹏翔, 杜小泽. 固-固相变储热及其材料制备和性能优化技术(Ⅰ)[J]. 材料导报, 2022, 36(5): 20080203-15.
[8] 郑灵钰, 章学来, 纪珺. 定型阻燃相变储热材料的研究进展[J]. 材料导报, 2022, 36(5): 20100275-8.
[9] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[10] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[11] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[12] 蒋自鹏, 张雨, 铁健, 铁生年. 一步法氧化改性纳米碳增强芒硝基复合相变材料热性能[J]. 材料导报, 2022, 36(12): 21030077-6.
[13] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[14] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[15] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed