Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21120259-21    https://doi.org/10.11896/cldb.21120259
  表面工程材料与技术 |
铁电材料表面电畴结构的压电力显微镜表征研究进展
何东昱1, 马国政1, 邢志国1, 王海斗1,2
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress of Piezoelectric Force Microscope on Surface Domain Structure of Ferroelectrics
HE Dongyu1, MA Guozheng1, XING Zhiguo1, WANG Haidou1,2
1 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
2 National Engineering Research Center for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
下载:  全 文 ( PDF ) ( 39409KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁电材料是一类应用广泛的功能材料,常用于电子、光学和精密机电等领域,未来有望用于高密度非易失性存储器和多功能纳米器件中。铁电材料的应用源于其具有自发极化电畴且可通过施加电场实现内部电畴的转向,因此对铁电畴及其极化翻转的理解和认知对于实际器件的设计与应用至关重要。压电力显微镜(PFM)方法是一种表面检测技术,基于极化和机电行为之间的强耦合作用,可直接反映铁电材料电畴结构的微观特征,用于探测纳米级压电和铁电特性。本文总结了使用压电力显微镜研究铁电材料表面电畴的最新成果与进展。首先,简要介绍了PFM技术的成像机制和分析方法;随后,展示了PFM技术在铁电畴结构以及电畴局部动力学中的相关研究,包括铁电体表面电畴结构的表征与识别、电畴的热稳定性、铁电表面屏蔽、电畴的形核、畴壁运动、电畴弛豫、电畴中缺陷的作用等;最后,指出了PFM研究铁电材料的发展趋势,包括铁电存储的应用与规律研究、新型铁电材料的优化设计、将PFM与其他技术结合对铁电体的深入探究和PFM技术的精细化发展对探索纳米压电和铁电的影响等方面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何东昱
马国政
邢志国
王海斗
关键词:  铁电材料  电畴  铁电表面  电畴翻转  压电力显微镜    
Abstract: Ferroelectrics are widely used in electronics, optics, precision electromechanical and other fields,which are also expected to be used in high-density nonvolatile memory and multifunctional nano devices in the future. The application of ferroelectrics origins from the domain and domain switching with applying of an electric field. Therefore, the understanding of ferroelectric domain polarization is very important for the design and application of ferroelectric devices.Piezoelectric force microscopy (PFM) method is a surface detection technique based on the strong coupling between polarization and electromechanical behavior, which can reflect the micro characteristics of the domain structure directly, and is used to probe nanoscale piezoelectric and ferroelectric characteristic.In this review, the latest achievements and progress in the study on ferroelectric domains by using PFM are summarized. Firstly, the mechanism and analysis methods of PFM technology are briefly introduced, and then the description of PFM technology in a wide range of ferroelectric domains and their dynamic process are shown,including ferroelectric surface domain structure characterization and identification, domain thermal stability, ferroelectric surface screening, domain nucleation, domain wall motion, domain relaxation, the role of domain defects.Finally, the development trend of PFM research on ferroelectric materials is pointed out, including the application and the regular study of PFM in ferroelectric storage, the optimal design of new ferroelectric materials, the in-depth characterization of ferroelectrics combined with other technologies, and the impact of the fine development of PFM technology on the exploration of nano piezoelectric and ferroelectric.
Key words:  ferroelectrics    domain    ferroelectric surface    domain switching    piezoresponse force microscopy
发布日期:  2022-04-07
ZTFLH:  O487  
基金资助: 国家自然科学基金(51805539;52130509;52075543);清华大学摩擦学国家重点实验室开放基金(SKLTKF19B07);国防基础科研计划(JCKY2019Z03)
通讯作者:  xingzg2011@163.com; whaidou2021@163.com   
作者简介:  何东昱,陆军装甲兵学院装备保障与再制造系副研究员。2007年6月本科毕业于北京科技大学材料科学与工程专业,2012年6月获北京科技大学工学博士学位。研究方向是再制造与纳米铁电表面工程,发表SCI学术论文10余篇,包括Physics review B、Applied physics letters、Journal of the American Ceramic Society、Journal of Alloys and Compounds、Acta Metallurgica Sinica等。
邢志国,博士,陆军装甲兵学院装备保障与再制造系助理研究员,研究方向为表面摩擦学。
王海斗,研究员,博士研究生导师,陆军装甲兵学院机械产品再制造国家工程研究中心主任。2003年毕业于清华大学并获得博士学位。国家杰出青年科学基金获得者,国家“万人计划”科技领军人才,国家中青年科技领军人才、国家百千万工程人才、国家有突出贡献中青年专家、北京市科技领军人才、国防973计划首席科学家。目前的研究领域包括表面工程、再制造工程、先进制造等。
引用本文:    
何东昱, 马国政, 邢志国, 王海斗. 铁电材料表面电畴结构的压电力显微镜表征研究进展[J]. 材料导报, 2022, 36(7): 21120259-21.
HE Dongyu, MA Guozheng, XING Zhiguo, WANG Haidou. Research Progress of Piezoelectric Force Microscope on Surface Domain Structure of Ferroelectrics. Materials Reports, 2022, 36(7): 21120259-21.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120259  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21120259
1 Li L Z, Xie L, Pan X Q. Reports on Progress in Physics,2019,82,126502.
2 Cohen R E.Nature, 1992, 358, 136.
3 Wul B.Nature, 1946, 157(3998), 808.
4 Damjanovic D.Reports on Progress in Physics, 1998, 61(9), 1267.
5 Scott J F, Dearaujo C A P.Science, 1989, 246(4936), 1400.
6 Setter N, Damjanovic D. Journal of Applied Physics,2006,100,051606.
7 Kalinin S V, Bonnell D A. Physics Review B, 2002, 65(12), 125408.
8 Kingon A I, Streiffer S K.Current Opinion in Solid State & Materials Science, 1999, 4, 39.
9 Patera L L, Queck F, Repp J.Physical Review Letters, 2020, 125(17), 176803.
10 Collins L, Celano U.ACS Applied Materials & Interfaces, 2020, 12(37), 41659.
11 Zhao H, Cai K, Cheng Z, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(6), 5613.
12 Rodriguez B J, Jesse S, Kalinin S V, et al. Applied Physics Letters, 2007, 90, 122904.
13 Tanaka M, Honjo G.Journal of the Physical Society of Japan, 1964, 19, 954.
14 Zivkovic L M, Stojanovic B D, Pavlovic V B, et al. Journal of the European Ceramic Society, 1999, 19, 1085.
15 Yadav A K, Nelson C T, Hsu S L.Nature, 2016,530, 198.
16 Gao P, Nelson C T, Jokisaari J R, et al. Nature Communications, 2011, 2, 591.
17 Kimoto K, Asaka T, Yu X Z, et al. Ultramicroscopy, 2010, 110, 778.
18 Kaspar T C, Hong S, Bowden M E, et al. Scientific Reports, 2018, 8(1), 3037.
19 Dittmer R, Jo W, Rödel J, et al. Advanced Functional Materials, 2012, 22(20), 4208.
20 Seungbum H.Journal of Applied Physics, 2021, 129, 051101.
21 Güthner P, Dransfeld K.Applied Physics Letters, 1992, 61, 1137.
22 Ganpule C S, Roytburd A L, Nagarajan V, et al. Physics Review B, 2001, 65, 014106.
23 Fang K Y, Gong L H, Jing W Q, et al. Materials Today Communications, 2019, 21, 100650.
24 Gainutdinov R V, Belugina N V, Tolstikhina A L, et al. Ferroelectrics, 2015, 486, 33.
25 Vasudevan R K, Balke N, Maksymovych P, et al. Applied Physics Reviews, 2017, 4, 021302.
26 Miriyala K, Ramadurai R.Ceramics International, 2018, 44 (12), 14556.
27 Okino H, Ida T, Ebihara H, et al. Japanese Journal of Applied Physics, 2001, 40 (9B), 5828.
28 Abplanalp M, Barosova D, Erhart J, et al. Journal of Applied Physics, 2002, 91(6), 3798.
29 Abplanalp M, Eng L M, Günter P. Applied Physics A, 1998, 66, S231.
30 He D Y, Tang X J, Liu Y X, et al. Materials, 2021, 14, 4463.
31 Felten F, Schneider G A, Munoz Saldana J, et al. Journal of Applied Physics, 2004, 96, (1), 563.
32 Wittborn J, Canalias C, Rao K V, et al. Applied Physics Letters, 2002, 80(9), 1622.
33 Uršič H, Uroš P.Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2019, 475, 20180782.
34 Choi T, Lee S, Choi Y J, et al. Science, 2009, 324, 63.
35 Wu W D, Guest J R, Horibe Y, et al. Physical Review Letters, 2010, 104, 217601.
36 Mendez-Gonzalez Y, Ferri A, Lima E C, et al. Journal of the American Ceramic Society, 2021, 104(7), 3665.
37 Goncalves A M, Jimenez R P, Eiras J A.Journal of Alloys and Compounds, 2021, 880(5), 160369.
38 Kutes Y, Ye L, Zhou Y, et al. Journal of Physical Chemistry Letters, 2014, 5, 3335.
39 Fan Z, Xiao J, Sun K, et al. Journal of Physical Chemistry Letters, 2015, 6, 1155.
40 Wang P, Zhao J, Wei L, et al. Nanoscale, 2017, 9, 3806.
41 Xu W J, Li P F, Tang Y Y, et al. Journal of the American Ceramic Society, 2017, 139, 6369.
42 Liu F, You L, Seyler K, et al. Nature Communications,2016,7,12357.
43 Cui C J, Hu W J, Yan X X, et al. Nano Letters, 2018, 18, 1253
44 Wu Y, Xie F, Chen H, et al. Advanced Materials,2017,29(28),1701073.
45 Kim J, Park K W, Hong J, et al. Applied Surface Science,2015,334,165.
46 Vasilescu C A, Trupina L, Vasile B S, et al. Journal of Nanoparticle Research, 2015, 17(11), 1.
47 Zhu L F, Liu Q, Zhang B P, et al. RSC Advances, 2018, 8(62), 35794.
48 Vakulenko A F, Vakhrushev S B, Filimonov A V.Ferroelectrics, 2019, 542(1), 77.
49 Zhang L Y, Geng W P, Chen X, et al. Ceramics International, 2020, 46(7), 9192.
50 He H Y, Lu X, Li M C, et al. Journal of Materials Chemistry C, 2020, 8(7), 2411.
51 Zhao J Y, Niu G, Ren W, et al. Journal of the European Ceramic Society, 2020, 40(12), 3928.
52 Chen X, Qiao X J, Zhang L Y, et al. Ceramics International, 2019, 45(14), 18030.
53 Wang Y C, Xie Q X, Wu Y, et al. Applied Physics A-Materials Science & Processing, 2019, 125(9), 653.
54 Tolstikhina A L, Gainutdinov R V, Belugina N V, et al. Physica B-Condensed Matter, 2018, 550(1), 332.
55 He D Y, Qiao L J, Volinsky A A. Journal of Applied Physics, 2011, 110, 074104
56 Li D B, Zhao M H, Garra J, et al. Nature Materials, 2008, 7, 473.
57 Thompson C, Fong D D, Wang R V, et al. Applied Physics Letters, 2008, 93, 182901.
58 Shvebelman M M, Agronin A G, Urenski R P, et al. Nano Letters, 2002, 2(5), 455.
59 Liu X Y, Kitamura K, Terabe K.Applied Physics Letters, 2006, 89, 132905.
60 Sergei V K, Yunseok K, Dillon D F, et al. Reports on Progress in Phy-sics, 2018, 81, 036502.
61 Chezganov D S, Shikhova V A, Fedorovyh V V, et al. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2020, 67(1), 191.
62 Balke N, Gajek M, Tagantsev A K, et al. Advanced Functional Mate-rials, 2010, 20(20), 3466.
63 Sharma P, McQuaid R G P, McGilly L J, et al. Advanced Materials, 2013, 25(9), 1323.
64 Song J F, Xiao Z Y, Chen B, et al. Acs Applied Materials & Interfaces, 2018, 10(20), 19218.
65 He D Y, Qiao L J, Volinsky A A, et al. Applied Physics Letters, 2011, 98, 062905.
66 Tong S, Park W I, Choi Y Y, et al. Physical Review Letters, 2015, 3, 014003.
67 Kim S, Kim Y, Park K W, et al. Journal of the Korean Physical Society, 2020, 77(1), 78.
68 Wang H L, Zeng K Y.Materials, 2021, 14(9), 855.
69 Shvartsman V V, Kholkin A L, Orlova A D, et al. Applied Physics Letters, 2005, 86, 202907.
70 Gao K G, Xu C, Cui Z P, et al. Physical Chemistry Chemical Physics, 2016,18(11), 7626.
71 Rodriguez B J, Gruverman A, Kingon A I, et al. Journal of Applied Physics, 2004, 95 (4), 1958.
72 Rodriguez B J, Gruverman A, Kingon A I, et al. Applied Physics Letters, 2005, 86, 012906.
73 Gruverman A, Alexe M, Meier D.Nature Communications,2019,10,1661.
74 Nonkumwong J, Sriboriboon P, Kundhikanjana W, et al. Integrated Ferroelectrics, 2018, 187, 210.
75 Liu Z H, Luo Z, Wang C Y, et al. Ceramics International, 2018, 44, S189.
76 Anthoniappen J, Chang W S, Ruiz F M, et al. Journal of Alloys and Compounds, 2019, 790, 587.
77 Lim S Y, Park M S, Kim A, et al. Applied Physics Letters, 2021, 118, 102902.
78 Roth R, Guo E J, Rafique M, et al. Physica Status Solidi B-Basic Solid State Physics, 2018, 255(7), 700486.
79 Buragohain P, Richter C, Schenk T, et al. Applied Physics Letters, 2018, 112, 222901.
80 Agronin A, Rosenwaks Y, Rosenman G.Applied Physics Letters, 2006, 88, 072911.
81 Bastos W B, Longo E, Chiquito A J, et al. Materials Chemistry and Physics, 2018, 214, 180.
82 Pertsev N A, Petraru A, Kohlstedt H, et al. Nanotechnology, 2008, 19(37), 375703.
83 ShaoY C, Fang Y J, Li T, et al. Energy & Environmental Science, 2016, 9(5), 1752.
84 Er X K, Zhang Y L, Yin Y P, et al. Materials Characterization, 2019, 154, 395.
85 Dutta M, Rahman M S, Bhalla A S, et al. Journal of Materials Science, 2016, 51(17), 7944.
86 Lei S H, Fan H Q, Fang J W, et al. Inorganic Chemistry Frontiers, 2018, 5(3), 568.
87 Li L L, Cao Y, Somnath S, et al. Advanced Electronic Materials, 2017, 3(4), 1600508.
88 Cheng L, Tang Y L, Zhu Y L, et al. Crystal Growth & Design, 2020, 20(9), 5967.
89 Qiao X J, Geng W P, Sun Y, et al. Journal of Alloys and Compounds, 2021, 852, 156988.
90 Liu X Y, Kitamura K J, Terabe K. Applied Physics Letters,2006,89,142906.
91 Nagarajan V, Aggarwal S, Gruverman A. et al. Applied Physics Letters, 2005, 86, 262910.
92 Ivry Y, Wang N, Chu D P, et al. Physical Review B,2010,81,174118.
93 Zhan K, Su M, Zhao B, et al. Ferroelectrics, 2016, 500, 276.
94 Zhao D, Lenz T, Katsouras I, et al. Organic Electronics,2017,47,189.
95 Guo M, Jiang J, Qian J, et al. Advanced Science,2019,6(6),1801931.
96 Tanaka K, Kurihashi Y, Uda T, et al. Japanese Journal of Applied Physics, 2008, 47(5R), 3311.
97 Chen Y, Zhang L, Liu J, et al. Carbon, 2019, 144, 15.
98 Lipatov A, Li T, Vorobeva N S, et al. Nano Letters,2019,19(5),3194.
99 Chen Y, Xu M, Hu X, et al. Nanoscale, 2020, 12(22), 11997.
100 Sankar M S R, Pramod K, Gangineni R B.Journal of Materials Science: Materials in Electronics, 2019, 30(23), 20716.
101 Li T, Ye M, Sun Z, et al. ACS Applied Materials & Interfaces, 2019, 11(4), 4139.
102 Ding L L, Ji Y, Zhang X Y, et al. ACS Applied Materials & Interfaces, 2021, 13(10), 12331.
103 Keeney L, Smith R J, Palizdar M, et al. Advanced Electronic Materials, 2020, 6(3), 1901264.
104 Vorpahl S M, Giridharagopal R, Eperon G E, et al. ACS Applied Energy Materials, 2018, 1(4), 1534.
105 Mitra S, Gupta S, Joseph A M, et al. Electronic Materials Letters, 2019, 15(2), 159.
106 Vila-Fungueiriño J M, Gómez A, Antoja-Lleonart J, et al. Nanoscale, 2018, 10(43), 20155.
107 Xun B W, Wang N, Zhang B P, et al. Ceramics International, 2019, 45(18), 24382.
108 Zhou X, Yuan X, Yan Z, et al. Journal of Materials Science, 2020, 55(18), 7634.
109 Yang B, Park N J, Kim S J, et al. Integrated Ferroelectrics, 2004, 68(1), 229.
110 Hu Q, Alikin D O, Zelenovskiy P S, et al. Journal of the European Ceramic Society, 2019, 39(14), 4131.
111 Zhu R, Zhang Q, Fang B, et al. Applied Physics Letters, 2018, 112(12), 122902.
112 Zhu R, Zhang Q, Fang B, et al. Ceramics International, 2018, 44(9),10099.
113 Liu N, Liang R, Zhao X, et al. Journal of Alloys and Compounds, 2018, 740, 470.
114 Zhang Q, Rana A, Liu X, et al. ACS Applied Electronic Materials, 2019, 1(1), 154.
115 Zhou F, Li Y, Liao X Q, et al. Nano Letters, 2021, 21, 4700.
116 Zeng Q B,Wang H L, Xiong Z, et al. Advanced Science, 2021, 8(8), 2003993.
117 Gervacio-Arciniega J J, Murillo-Bracamontes E A, Toledo-Solano M, et al. Journal of Applied Physics, 2020, 127(19), 194102.
118 Chu K, Yang C H.Review of Scientific Instruments, 2018, 89(12), 123704.
119 Kim B, Barrows F P, Sharma Y, et al. Scientific Reports,2018,8,203.
120 Kratzer M, Lasnik M, Röhrig S, et al. Scientific Reports,2018,8,422.
121 Xie S, Chen Y, Liu W, et al. Acta Materialia, 2020, 188, 228.
[1] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[2] 王歆钰, 镇思琦, 董正超, 仲崇贵. 铁电材料的电热效应及其研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 13-18.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed