Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20090340-6    https://doi.org/10.11896/cldb.20090340
  金属与金属基复合材料 |
轧制钼材制备过程织构演变的研究现状
李艳1, 周增林1,2,3, 何学良1, 陈文帅1,2,3, 惠志林1
1 有研工程技术研究院有限公司,北京 101407
2 有研科技集团有限公司智能传感功能材料国家重点实验室,北京 100088
3 北京有色金属研究总院,北京 100088
Research Status of Texture Evolution of As-rolled Molybdenum in Preparation Process
LI Yan1, ZHOU Zenglin1,2,3, HE Xueliang1, CHEN Wenshuai1,2,3, HUI Zhilin1
1 GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
2 State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Corporation Limited, Beijing 100088, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
下载:  全 文 ( PDF ) ( 5731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相对于钼合金,纯钼轧制板带箔材的应用性能改善途径更多地集中于原料纯度提高及显微组织结构优化,其中因烧结、轧制及退火过程中晶粒取向择优分布而形成的织构是不可忽略的重要因素。
尽管近年来X射线衍射、电子背散射衍射等织构分析技术的进步为更深入研究钼材织构形成和演变提供了充分的支持,但是相关研究往往局限于某一特定状态或阶段(如热轧、冷轧或退火等)的钼材的织构情况,对钼材织构在整个制备过程中的演变行为尚缺少系统总结。
纯钼薄板的轧制和初始再结晶织构为典型的无杂质体心立方金属织构,主要包括以{001}〈110〉、{112}〈110〉为代表的α线织构和以{111}〈110〉、{111}〈112〉为代表的γ线织构等组分;其形成经历了从烧结钼坯的〈100〉//ND、〈110〉//ND、〈112〉//ND或 〈113〉//ND织构,到轧制过程中主织构成分{001}〈110〉或{112}〈110〉以及γ线织构的逐渐生成和增强,再到部分再结晶时的主织构强化、{111}〈110〉基本不变、{111}〈112〉弱化,最后到完全再结晶时织构主成分从{112}〈110〉到{113}〈110〉、{001}〈110〉的演变历程。
从轧制钼材织构的分析表征手段入手,本文循着制备工艺路线梳理了钼材轧制及退火过程中织构的演变轨迹,旨在总结近年来国内外有关轧制钼材制备过程织构演变的研究工作,并归纳钼材与低碳钢等工业应用更广泛、研究更深入的BCC金属织构及演变规律的异同,以供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李艳
周增林
何学良
陈文帅
惠志林
关键词:    织构演变  轧制  再结晶    
Abstract: Compared with molybdenum alloys, the improvement of application performance of pure molybdenum rolled sheet, strip and foil is more focused on improving the purity of raw materials and optimizing the microstructure. In view of this, the texture formed by the preferential distribution of grain orientation during sintering, rolling and annealing process, should be paid more attention.
While recent advances in texture analysis techniques, such as X-ray diffraction and electron backscatter diffraction, have provided sufficient support for more in-depth understanding on texture,relevant research of molybdenum texture is confined to texture state in a certain status, such as hot rolling, cold rolling or annealing. The literature on texture evolution of molybdenum materials in entire rolling and heat treatment process has not yet been published.
The rolling and primary-recrystallizated texture of pure molybdenum sheet present typical texture components of impurity-free body-centered cubic metals, mainly including α-fiber components, such as {001}〈110〉 and {112}〈110〉,and γ-fiber ones, such as {111}〈110〉 and {111}〈112〉. Their formation has evolved as the following sequences: the existence of 〈100〉//ND, 〈110〉//ND, 〈112〉//ND or 〈113〉//ND texture in sintered molybdenum billet; the formation and enhancement of main texture components, {001}〈110〉 or {112}〈110〉, and γ-fiber ones during rolling process; enhanced {001}〈110〉 or {112}〈110〉, unchanged {111}〈110〉 and weakened {111}〈112〉 during partial recrystallization; the change of main texture components from {112}〈110〉 to {113}〈110〉 and {001}〈110〉 through full recrystallization.
Based on the comparation of XRD and EBSD, this paper depicted the texture development of molybdenum material along the processing route for summarizing the relevant research work. In addition, the texture evolution of molybdenum was also compared with that of low carbon steel, which is also one of the most deeply researched BCC metals. This paper aims to provide a better understanding of texture evolution in this category of metals.
Key words:  molybdenum    texture evolution    rolling    recrystallization
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TG146.4+12  
基金资助: 国家重点研发计划专项项目(2017YFB0306000)
通讯作者:  scalett1000000@163.com   
作者简介:  李艳,有研工程技术研究院有限公司高级工程师。2008年1月毕业于北京科技大学材料科学与工程学院,获得博士学位。2008—2011年在北京有色金属研究总院进行博士后研究工作,2011年5月进入北京有色金属研究总院(有研工程技术研究院有限公司)并工作至今。主要从事难熔金属材料与器件及电真空材料的研究工作。近年来,在难熔金属材料与器件领域发表论文20余篇。
引用本文:    
李艳, 周增林, 何学良, 陈文帅, 惠志林. 轧制钼材制备过程织构演变的研究现状[J]. 材料导报, 2022, 36(12): 20090340-6.
LI Yan, ZHOU Zenglin, HE Xueliang, CHEN Wenshuai, HUI Zhilin. Research Status of Texture Evolution of As-rolled Molybdenum in Preparation Process. Materials Reports, 2022, 36(12): 20090340-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090340  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20090340
1 Liu G, Zhang G J, Jiang F, et al. Nature Materials, 2013, 12(4), 344.
2 Babinskya K, Weidowb J, Knablc W, et al. Materials Characterization, 2014, 87, 95.
3 Primig S, Clemens H, Knabl W, et al. International Journal of Refractory Metals & Hard Materials, 2015, 48, 179.
4 Leitner K, Scheiber D, Jakob S, et al. Materials & Design, 2018, 142, 36.
5 Mao W M. The crystallographic texture and anisotropy of metallic mate-rials, Science Press, China, 2002 (in Chinese).
毛卫民. 金属材料的晶体学织构与各向异性, 科学出版社, 2002.
6 Park K K, Cho J H, Han H N, et al. Key Engineering Materials, 2003, 233-236, 567.
7 Pöhl C, Schatte J, Leitner H. Materials Characterization, 2013, 77, 63.
8 Mao W M, Yang P, Chen L. Material texture analysis principle and detection technology, Metallurgical Industry Press, China, 2008 (in Chinese).
毛卫民, 杨平, 陈冷. 材料织构分析原理与检测技术, 冶金工业出版社, 2008.
9 Zheng P P, Chen L, He F, et al. Journal of Materials Science & Engineering, 2014, 32(2), 293 (in Chinese).
郑盼盼, 陈冷, 何飞, 等.材料科学与工程学报, 2014, 32(2), 293.
10 Mi X C. Baosteel Technology, 2005(S), 31 (in Chinese).
宓小川.宝钢技术, 2005(S), 31.
11 Wang G J. Textureanalysis in commercially pure titanum after equal channel angular pressing at room temperature. Master's Thesis, Xi’an University of Architecture and Technology, China, 2013 (in Chinese).
王耿洁. 室温ECAP变形工业纯钛的织构分析. 硕士学位论文, 西安建筑科技大学, 2013.
12 Wang X. Multi-scale investigation on mecroscopic simulation and microstructure evolution of pure Mo powder compactec by severe plastic deformatmn processing.Ph.D. Thesis, Hefei University of Technology, China, 2016 (in Chinese).
王雪. 纯钼粉大塑性变形的细管模拟及微观亚结构演化的多尺度研究. 博士学位论文,合肥工业大学, 2016.
13 Hosseini E, Kazeminezhad M. Materials Science and Engineering A, 2009, 526, 219.
14 Yang P. Electron backscatter diffraction technique and its application, Metallurgical Industry Press, China, 2007 (in Chinese).
杨平. 电子背散射衍射技术及其应用, 冶金工业出版社, 2007.
15 Chen S K, Li Q Y, Miao Z, et al. Rare Metal Materials and Engineering, 2006, 35(3), 500 (in Chinese).
陈绍楷, 李晴宇, 苗壮, 等. 稀有金属材料与工程, 2006, 35(3), 500.
16 Zhou Z L, Li Y, Xie Y F, et al. Rare Metal Materials and Engineering, 2019, 48(8), 2502 (in Chinese).
周增林, 李艳, 谢元锋, 等. 稀有金属材料与工程, 2019, 48(8), 2502.
17 Yu Y N. Principles of metallography (second edition ), Metallurgical Industry Press, China, 2013 (in Chinese).
余永宁. 金属学原理(第2版), 冶金工业出版社, 2013.
18 Zhang N, Mao W M. International Journal of Refractory Metals & Hard Materials, 2019, 80, 210.
19 Nikolic V, Wurster S, Firneis D, et al. Nuclear Materials and Energy, 2016, 9, 181.
20 Hirosuke I. ISIJ International, 1994, 34(4), 313.
21 Toth L S, Jonas J J, Daniel D, et al. Metallurgical Transactions A, 1990, 21, 2985.
22 Lyu Q G, Chen G N, Zhou J C, et al. Iron Steel Vanadium Titanium, 2001, 22(2), 1 (in Chinese).
吕庆功, 陈光南, 周家琮, 等.钢铁钒钛, 2001, 22(2), 1.
23 Samajdar I, Verlinden B, Vanhoutte P. Acta Materialia, 1998,46 (8), 2751.
24 Lee S N, Lee D N. International Journal of Mechanical Sciences, 2001, 43, 1997.
25 Kestens L, Jonas J J. ISIJ International, 1997, 37, 807.
26 Kestens L, Jonas J J, Van H P, et al. Metallurgical and Materials Tran-sactions A, 1996, 27(8), 2347.
27 Liu R Z, Wang K S, Sun Y J. Powder Metallurgy Technology, 2014, 32(2), 106 (in Chinese).
刘仁智, 王快社, 孙院军.粉末冶金技术, 2014, 32(2), 106.
28 Wang F, Zhou Z L, Li Y, et al. Physics and Engineering of Metallic Materials, Springer Procceedings in Physics, 2019, 217, 73.
29 Fu X Y, Zhou Z L, Li Y, et al. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105341.
30 Oertel C G, Huensche I, Skrotzki W, et al. Materials Science and Engineering A, 2008, 483-484, 79.
31 Oertel C G, Huensche I, Skrotzki W, et al. International Journal of Refractory Metals & Hard Materials, 2010, 28, 722.
32 Liu Y S. Journal of Central-South Institute of Mining and Metallurgy, 1982(4), 79 (in Chinese).
刘毓舒.中南矿冶学院学报, 1982(4), 79.
33 You S W. Physical Testing and Chemical Analysis Part A:Physical Testing, 2000, 36(8), 342 (in Chinese).
尤世武. 理化检验(物理分册), 2000, 36(8), 342.
34 Li J W, Yang S T, Wei S Z, et al. Chinese Journal of Rare Metals, 2014, 38(3), 348 (in Chinese).
李继文, 杨松涛, 魏世忠, 等. 稀有金属, 2014, 38(3), 348.
35 Primig S, Leitner H, Knabl W, et al. Metallurgical and Materials Tran-sactions A, 2012, 43, 4794.
36 Primig S,Leitner H,Rodriguez A.International Journal of Refractory Metals & Hard Materials, 2010, 28(6), 703.
37 Primig S, Leitner H, Knabl W, et al. Metallurgical and Materials Tran-sactions A, 2012, 43(12), 4806.
38 Zhang X X, Yan Q Z, Lang S T, et al. Materials & Design, 2017, 126, 1.
39 Primig S, Leitner H, Knabl W, et al. Materials Science and Engineering A, 2012, 535, 316.
40 Bonk S, Reiser J, Hoffmann J, et al. International Journal of Refractory Metals & Hard Materials, 2016, 60, 92.
41 Primig S, Clemens H, Knabl W, et al. International Journal of Refractory Metals & Hard Materials, 2015, 48, 179.
42 Reiser J, Bonnekoh C, Karcher T, et al. International Journal of Refractory Metals & Hard Materials, 2020, 86, 105084.
43 Gazder A A, Hazra S S, Pereloma E V. Materials Science and Enginee-ring A, 2011, 530, 492.
44 Lobanov M L, Danilov S V, Pastukhov V I, et al. Materials & Design, 2016, 109, 251.
[1] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[2] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[3] 连启会, 张行泉, 霍冀川, 吴浪, 张壮森. Nd2O3对钼酸钙-钙钛锆石硼硅酸盐玻璃陶瓷结构和性能的影响[J]. 材料导报, 2022, 36(7): 21020054-5.
[4] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[5] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[6] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[7] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[8] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[9] 邓军平, 张晓涵. 高掺量钼尾矿制备超轻水泥基泡沫保温板试验研究[J]. 材料导报, 2021, 35(Z1): 288-290.
[10] 陈守东, 卢日环, 陈子潘, 孙建, 李杰. 轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟[J]. 材料导报, 2021, 35(4): 4170-4176.
[11] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[12] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[13] 张意丽, 汤旭涛, 李坚烨, 王府权, 唐康, 胡金星, 方振兴, 严洁峰, 王卫. 冷冻干燥辅助法制备具有增强储锂性能的介孔NiMoO4纳米簇[J]. 材料导报, 2021, 35(24): 24011-24017.
[14] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[15] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed