Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20090337-8    https://doi.org/10.11896/cldb.20090337
  金属与金属基复合材料 |
金属电弧增材成形控制关键技术及研究现状
石玗, 朱珍文, 张刚, 李璐鹏
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州730050
Key Technology and Status of Metal Arc Additive Morphology Control
SHI Yu, ZHU Zhenwen, ZHANG Gang, LI Lupeng
State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属电弧增材制造是一种高效、低成本的快速净成形工艺,非常适合大尺寸金属零部件的整体成形制造。但电弧增材过程中热积累、散热边界条件及沉积层表面状态等非平衡时变使得成形件尺寸精度较低,直接影响沉积件的工程化应用。为此,本文以电弧增材成形过程稳定性控制为考察对象,详细调研分析了国内外相关研究机构的研究成果与技术优势,归纳总结了通过提高电弧增材成形过程稳定性来提高尺寸精度和表面质量需解决的关键科学技术问题,并讨论了以控制电弧增材成形过程稳定性提升成形精度的研究发展方向,以期为电弧增材过程稳定性调控和提高成形尺寸精度提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石玗
朱珍文
张刚
李璐鹏
关键词:  丝材电弧增材制造  近净成形  熔池动态行为  稳定性控制    
Abstract: Metal arc additive manufacturing is an efficient and low-cost rapid net forming process, which is very suitable for the overall manufacturing of large-size metal parts. However, a series of non-equilibrium temporal variations such as heat accumulation, heat dissipation boundary conditions and deposition layer surface conditions, have been found to lower the dimensional accuracy of the formed parts, thereby directly handicapping the industrial application. On this regard, this paper takes the stability control of the arc additive forming process as the objective, and provides detailed investigation and analysis of the current research and technical advantages of the wire arc additive manufacturing. The key scientific and technical issues are proposed and outlooked, which imply the countermeasures of adjusting the additive manufacturing process stability to solve the aforementioned issues involving dimensional accuracy and surface quality. A prospective discussion on the future trends is also given in order to provide a useful reference for arc additive process stability control and improvement of forming dimensional accuracy.
Key words:  wire arc additive manufacturing    near net shape    dynamic behavior of molten pool    stability control
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TG455  
基金资助: 国家自然科学基金(51905245);甘肃省重点研发计划项目(20YF8GA054);甘肃省自然科学基金(20JR5RA455);2022年陇原青年创新创业人才(团队)项目;光机电装备技术北京市重点实验室开放基金项目;兰州理工大学红柳优秀青年资助计划项目;中科院“西部之光”青年学者计划项目
通讯作者:  shiyu@lut.edu.cn   
作者简介:  石玗,兰州理工大学教授(博士)、博士研究生导师,国际焊接学会委员,中国焊接学会常务理事,中国机械工程学会高级会员,美国焊接学会会员。2001年6月获兰州理工大学材料加工工程专业工学硕士学位,2005年6月获兰州理工大学材料加工工程专业工学博士学位,2011年晋升教授,同年破格受聘为博士生导师。2007年2月—2008年2月和2011年7月—2011年12月两次在美国肯塔基大学先进制造中心焊接实验室访问研修,主要从事先进焊接方法、焊接物理及焊接过程控制等领域的研究工作。近年来,发表学术论文150余篇,其中SCI、EI、ISTP收录80余篇。主持国家“973”前期项目1项、国家自然科学基金项目4项、国家自然科学基金国际合作项目2项、教育部重点项目1项、军工科研项目4项、其他省部级及企业工程项目40余项,获多项科技奖励。
引用本文:    
石玗, 朱珍文, 张刚, 李璐鹏. 金属电弧增材成形控制关键技术及研究现状[J]. 材料导报, 2022, 36(12): 20090337-8.
SHI Yu, ZHU Zhenwen, ZHANG Gang, LI Lupeng. Key Technology and Status of Metal Arc Additive Morphology Control. Materials Reports, 2022, 36(12): 20090337-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090337  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20090337
1 Lu B H, Li D C. Machine Building & Automation, 2013(4), 7(in Chinese).
卢秉恒, 李涤尘. 机械制造与自动化, 2013(4),7.
2 Xiong J T, Di H B, Lin X. Aeronautical Manufacturing Technology, 2015, 58(23/24),80(in Chinese).
熊江涛, 耿海滨, 林鑫, 等. 航空制造技术,2015,58(23/24),80.
3 Wang H M, Zhang S Q, Wang T, et al. Journal of Xihua University(Na-tural Science Edition), 2018, 37(4), 9(in Chinese).
王华明, 张述泉, 王韬, 等.西华大学学报(自然科学版), 2018, 37(4),9.
4 Xu H L, Chen X Z, Xu G F, et al. Materials Reports A: Review Papers, 2015(6),114(in Chinese).
徐辉丽, 陈希章, 徐桂芳, 等. 材料导报:综述篇, 2015(6),114.
5 Lu B H. Science & Technology Association Forum, 2016(10),11(in Chinese).
卢秉恒. 科协论坛, 2016(10),11.
6 Huang W D. Advanced Materials Industry, 2013(8),16(in Chinese).
黄卫东. 新材料产业, 2013(8),16.
7 Mughal M P, Fawad H, Mufti R A. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2006, 220(6),875.
8 Williams S W, Martina F, Addison A C, et al.Materials Science and Technology, 2016, 32 (7),641.
9 Ding J, Colegrove P, Mehnen J, et al. International Journal of Advanced Manufacturing Technology, 2014, 70(1/4),227.
10 Ding J, Colegrove P, Mehnen J, et al. Computational Materials Science, 2011, 50(12),3315.
11 Wang F D, Williams S, Rush M. International journal of Manufacture Technology, 2011, 57,597.
12 Xu J Q, Peng Y, Zhou Q, et al. Transactions of the China Welding Institution, 2019, 40(9),8 (in Chinese).
徐俊强, 彭勇, 周琦, 等. 焊接学报, 2019, 40(9),8.
13 Frazier W E. Journal of Materials Engineering& Performance, 2014, 23(6),1917.
14 Yong H, Ming C L, Mazumder J, et al. Journal of Manufacturing Science & Engineering, 2015, 137( 1) ,14001.
15 DUDAT. IFAC-Papers On Line, 2016, 49(29),103.
16 Bo J Q, Fan C L, Lin S B,et al. Transactions of the China Welding Institution, 2016, 37(3), 115(in Chinese).
柏久阳, 范成磊, 林三宝,等. 焊接学报, 2016, 37(3),115.
17 Sun F J, Feng R H, Liu S Y. Electric Welding Machine, 2018,48(6), 8(in Chinese).
孙福建, 冯曰海,刘思余. 电焊机, 2018, 48(6),8.
18 Luo Z, Zhang Y, Jia P. Welding Joining, 2016(4),13(in Chinese).
罗震, 张禹, 贾鹏. 焊接, 2016(4), 13.
19 Feng Y, He L, Wang K, et al. Journal of Materials Engineering & Performance, 2018, 27,302.
20 Ayarkwa K F, Williams S M, Ding J. Additive Manufacturing, 2017, 18, 186.
21 Han Q L, Li D Y, Sun H J, et al. International Journal of Advanced Ma-nufacturing Technology, 2019, 104,9.
22 Zuo W, Ma L, Lu Y, et al. Metals and Materials International, 2018, 24,1346.
23 Yang D Q, He C J, Zhang G G. Journal of Materials Processing Technology, 2016, 227,153.
24 Mao Y G, Zeng Y, Wang T, et al. Transactions of the China Welding Institution, 2015, 36(7),5(in Chinese).
苗玉刚, 曾阳, 王腾, 等. 焊接学报, 2015, 36(7), 5.
25 Gao C,Chen X, Su C, et al. Materials Express, 2019, 9(2),179.
26 Lu Z Y, Liu F, Jiang F, et al. Rare Metal Materials and Engineering, 2019,48(2),524(in Chinese).
卢振洋, 刘峰, 蒋凡, 等. 稀有金属材料与工程, 2019, 48(2), 524.
27 Spaniol E, Ungethüm T, Trautmann M, et al. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 1329.
28 Liang Z, Jinglong L, Yi L, et al. The International Journal of Advanced Manufacturig Technology, 2018, 99,1521.
29 Luo Y, Li J, Xu J, et al. Journal of Materials Processing Technology, 2018, 259,353.
30 Liang Z, Jinglong L, Yi L, et al. Additive Manufacturing Technology. 2018, 134,154.
31 Jie X, Yi L, Liang Z. et al. Measurement, 2019, 134,25.
32 Eimer E, Suder W, Williams S, et al. Welding in the World, 2020, 64(7),1313.
33 Gong M C, Meng Y F, Zhang S, et al. Additive Manufacturing, 2020, 33,101180.
34 Xiong J, Yin Z, Zhang W. International Journal of Advanced Manufactu-ring Technology, 2016, 87(1-4),579.
35 Xiong J, Zhang G, Qiu Z, et al. Journal of Cleaner Production, 2013, 419(2),82.
36 Xiong J, Zhang G. Measurement Science and Technology, 2013, 24(11),5103.
37 Xiong J, Li Y J, Yin Z Q, et al. Chinese Journal of Mechanical Enginee-ring, 2018, 31(1),133.
38 Luo Y, Zhang H, Wang F M. Welding Technology, 2009, 38(4), 41(in Chinese).
罗勇, 张华, 王富明. 焊接技术, 2009, 38(4), 41.
39 Luo Y, Zhang H, Li Y H, et al, Laser Technology, 2007, 31(4) (in Chinese).
罗勇, 张华, 李月华, 等. 激光技术, 2007, 31(4),367.
40 Kwak Y M, Doumanidis C C. Journal of Manufacturing Processes, 2002, 4(1),28.
41 Charalabos Doumanidis,Yong Min Kwak. International Journal of Pressure Vessels & Piping, 2002, 79(4), 251.
42 Xu J N, Zhang H, Zhang G Y. In: Conference Record of the 2008 IEEE on Cybernetics and Intelligent Systems,Chengdu, China, 2008, pp. 976.
43 Xiong J, Yin Z, Zhang W. Journal of Materials Processing Technology, 2018, 233, 100.
44 Xiong J, Yin Z, Zhang W. The International Journal of Advanced Manufacturing Technology, 2016, 87(1-4), 579.
45 Yin F. Study on forming process and dimension precision control of stainless steel arc additive manufacturing. Master's Thesis, Nanjing University of Science and Technology, China, 2017(in Chinese).
尹凡. 不锈钢电弧增材制造成形工艺研究及尺寸精度控制. 硕士学位论文, 南京理工大学, 2017.
46 Sagar H N, Neelesh K J, Mayur S. The International Journal of Advanced Manufacturing Technology, 2020, 106(3),1239.
47 Xiao Y C. Forming control and performance analysis of duplex stainless steel arc additive manufacturing. Master's Thesis, Yanshan University, China, 2017(in Chinese).
肖雨晨.双相不锈钢电弧增材制造的成形控制与性能分析. 硕士学位论文, 燕山大学, 2017.
48 Cong B Q, Su Y, Qi B J, et al. Aerospace Manufacturing Technology, 2016(3), 29(in Chinese).
从保强, 苏勇, 齐铂金, 等.航天制造技术, 2016(3), 29.
49 Song E J. Study on shape control technology of low carbon steel MAG arc additive manufacturing. Master's Thesis, Xiangtan University, China, 2017 (in Chinese).
宋二军. 低碳钢MAG电弧增材制造控形技术研究. 硕士学位论文, 湘潭大学, 2018.
50 Ma Q, Ma S Y, Liu C M, et al. Hot Working Technology, 2018, 47(1), 189(in Chinese).
马倩, 马树元, 刘长猛,等.热加工工艺, 2018, 47(1),189.
51 Zhao X X, Sun C, Ye F X, et al. Welding Joining, 2016(4), 33(in Chinese).
赵孝祥, 孙策, 叶福兴, 等. 焊接, 2016(4), 33.
52 Yin Y H, Hu S S, Liu W L, et al. Ordnance Material Science and Engineering, 2008, 31(4), 55(in Chinese).
尹玉环, 胡绳荪, 刘望兰, 等. 兵器材料科学与工程, 2008, 31(4), 55.
53 Li T X. Research on the fabrication and molding technology of CMT arc additive for typical thin-walled structural parts. Master's Thesis, Tianjin Polytechnic University, China, 2019 (in Chinese).
李天旭. 典型薄壁结构件CMT电弧增材制造成形技术研究. 硕士学位论文, 天津工业大学, 2019.
54 Xia R F. Study on optimization of forming size and process parameters of arc additive manufacturing. Master's Thesis, Huazhong University of Science and Technology, China, 2016 (in Chinese).
夏然飞. 电弧增材制造成形尺寸及工艺参数优化研究. 硕士学位论文, 华中科技大学, 2016.
55 Ortega A G, Galvan L C, Deschaux-Beaume F, et al. Science and Technology of Welding and Joining, 2018, 23(4), 316.
56 Zhou X M, Zhang H O, Wang G L, et al. Acta Physica Sinica, 2016,65(3),331(in Chinese).
周祥曼, 张海鸥, 王桂兰, 等. 物理学报, 2016, 65(3), 331.
57 Xing T H. Numerical simulation and process optimization of thermal field of duplex stainless steel arc additive manufacturing. Master's Thesis, Yanshan University, China, 2018 (in Chinese).
邢天航. 双相不锈钢电弧增材制造热力场数值模拟与工艺优化. 硕士学位论文, 燕山大学, 2018.
58 Oyama K, Diplas S, M'Hamdi M, et al. Additive Manufacturing, 2019, 26, 180.
59 Zhou X. Numerical simulation of heat and mass transfer in arc and melt pool in arc additive manufacturing. Master's Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
周星. 电弧增材制造中电弧和熔池热质传递数值模拟. 硕士学位论文, 华中科技大学, 2018.
60 Xu G, Hu J, Tsai H L. Journal of Applied Physics, 2008, 104(10), 129.
[1] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed