Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20090342-10    https://doi.org/10.11896/cldb.20090342
  高分子与聚合物基复合材料 |
间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展
严蛟1,2, 邝旻翾1, 胡宏林2, 孔磊2, 马慧玲1, 张秀芹1
1 北京服装学院材料设计与工程学院,北京市纺织纳米纤维工程技术研究中心,北京 100029
2 航天材料及工艺研究所先进功能复合材料技术重点实验室,北京 100076
Research Progress in Tailoring the Microstructure of Resorcinol-Formaldehyde Organic/Carbon Aerogel
YAN Jiao1,2, KUANG Minxuan1, HU Honglin2, KONG Lei2, MA Huiling2, ZHANG Xiuqin1
1 Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
2 Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 18825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 酚醛/碳气凝胶因其独特的耐烧蚀性能以及优异的物理、化学性能,在声/热阻材料、吸附材料、能源储存装置、传感器、宇航工业等领域具有重要的应用价值。本文系统综述了催化剂、添加剂和干燥方式在间苯二酚-甲醛基酚醛/碳气凝胶制备过程中的影响。分别介绍了酸/碱催化机理,阐述了催化剂种类及pH值对气凝胶微观结构的调控;分析了表面活性剂的作用机理,讨论了其种类和用量对气凝胶微观结构的影响,以及碳纳米管、氧化石墨烯、壳聚糖、盐类等多种添加剂对气凝胶微纳结构的调控;总结了超临界干燥、冷冻干燥、常压干燥三种常见干燥方式对气凝胶微观结构的影响,着重讨论了实现常压干燥的必要条件及原理。最后,总结了酚醛气凝胶研究领域所面临的挑战,探讨了其未来的发展方向,包括改善其宏观力学性能、降低成本、实现超柔性以及发展可3D打印的酚醛气凝胶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严蛟
邝旻翾
胡宏林
孔磊
马慧玲
张秀芹
关键词:  酚醛气凝胶  催化剂  pH值  添加剂  干燥方式    
Abstract: Because of the excellent ablation resistance and physical/chemical properties, phenolic/carbon aerogel has great potential in the fields of acoustic/thermal resistance material, absorption material, energy storage material, sensor, aerospace industry, etc. This mini-review introduced the main factors in the synthesis of resorcinol-formaldehyde organic/carbon aerogel, including catalyst, additives and drying methods. First, the catalytic mechanism of acids/bases, the impact of the catalyst types and solution pH value on the microstructure of the aerogel were discussed. Then, while the interaction mechanism of surfactants was analyzed, how the types and the amount of surfactants influence the microstructure was elucidated. Further, the role of additives, such as carbon nanotubes, graphene oxide, chitosan, salts, etc., was discussed. The effects of different drying methods i.e., supercritical drying, freeze-drying and ambient pressure drying, on the microstructure of the aerogel were compared, with an emphasis on the prerequisites and principles for ambient pressure drying. Finally, the current challenges were summarized and the possible future developments of resorcinol-formaldehyde polymer/carbon aerogel were prospected, such as improvement of mechanical properties, cost-effective, super elastic aerogel and 3D printable aerogel.
Key words:  phenolic aerogel    catalyst    pH value    additive    drying method
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TB34  
  TB35  
  O631.5  
基金资助: 国家自然科学基金(51673003);北京市长城学者培育计划(CTT&TCD20180321)
通讯作者:  clyzxq@bift.edu.cn   
作者简介:  严蛟,2013年毕业于天津工业大学,获得学士学位。2013年至2019年,就职于航天材料及工艺研究所,现为北京服装学院材料学院在读硕士研究生,在张秀芹教授的指导下进行研究工作,目前主要研究领域为水溶性酚醛树脂气凝胶的结构设计、制备以及抗氧化改性。
张秀芹,理学博士,北京服装学院教授,德国洪堡学者。2007年在中国科学院化学研究所高分子化学与物理专业取得博士学位。主要从事生物可降解材料的高性能化和功能化的研发工作。承担参加国家级、省部级科研项目20余项,发表SCI论文70余篇,授权国家发明专利10余项,参与专著一部。作为研究骨干,曾获得2015年国家科技进步二等奖、“纺织之光”2014年度科学技术进步一等奖。荣获“教育部新世纪优秀人才”称号。
引用本文:    
严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
YAN Jiao, KUANG Minxuan, HU Honglin, KONG Lei, MA Huiling, ZHANG Xiuqin. Research Progress in Tailoring the Microstructure of Resorcinol-Formaldehyde Organic/Carbon Aerogel. Materials Reports, 2022, 36(12): 20090342-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090342  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20090342
1 Hu L, He R J, Lei H S, et al. International Journal of Thermophysics, 2019, 40(4), 39.
2 Brilliantova I S, Lebedev I V, Gordienko M G, et al. Russian Journal of Physical Chemistry B, 2019, 13(7), 1174.
3 Nagy B, Geissler E, László K. Microporous and Mesoporous Materials, 2020, 294, 109888.
4 Noroozi M, Panahi-Sarmad M, Abrisham M, et al. ACS Applied Energy Materials, 2019, 2(8), 5319.
5 Pekala R W. Journal of Materials Science, 1989, 24, 3221.
6 Alonso-Buenaposada I D, Rey-Raap N, Calvo E G, et al. Journal of Sol-Gel Science and Technology, 2017, 84(1), 60.
7 Enterría M, Figueiredo J L. Carbon, 2016, 108, 79.
8 Arenillas A, Menéndez J A, Reichenauer G, et al. In: Organic and carbon gels, Aegerter M A, Prassas M, ed., Springer, Switzerland, 2019, pp. 1.
9 Kinnertová E, Slovák V. Journal of Thermal Analysis and Calorimetry, 2018, 134(2), 1215.
10 Elkhatat A M, Al-Muhtaseb S A. Advanced Materials, 2011, 23(26), 2887.
11 Calvo E G, Menéndez J A, Arenillas A. Journal of Non-Crystalline Solids, 2016, 452, 286.
12 Wu D C, Fu R W, Zhang S T, et al. Journal of Non-Crystalline Solids, 2004, 336(1), 26.
13 Tannert R, Schwan M, Ratke L. The Journal of Supercritical Fluids, 2015, 106, 57.
14 Molina-Campos D F, Fonseca-Correa R A, Vargas-Delgadillo D P, et al. Data in Brief, 2017, 12, 409.
15 Berthon S, Barbieri O, Ehrburger-Dolle F, et al. Journal of Non-Crystalline Solids, 2001, 285, 154.
16 Xu Y L, Yan M F, Wang S S, et al. Journal of Porous Materials, 2017, 24(5), 1375.
17 Yan M F, Zhang L H, He R, et al. Journal of Porous Materials, 2015, 22(3), 699.
18 Liu H, Saffaripour M, Mellin P, et al. Energy, 2014, 77, 352.
19 Al-Muhtaseb S A, Ritter J A. Advanced Materials, 2003, 15(2), 101.
20 Yang I, Kim S G, Kwon S H, et al. Electrochimica Acta, 2017, 223, 21.
21 Alshrah M, Tran M P, Gong P J, et al. Journal of Colloid And Interface Science, 2017, 485, 65.
22 Abbas Q, Mirzaeian M, Ogwu A A. International Journal of Hydrogen Energy, 2017, 42(40), 25588.
23 Taylor S J, Haw M D, Sefcik J, et al. Langmuir, 2014, 30(34), 10231.
24 Yang Z, Li J, Xu X J, et al. Journal of Materials Science & Technology, 2020, 50, 66.
25 Kinnertová E, Slovák V. Thermochimica Acta, 2018, 660, 37.
26 Nagy B, Bakos I, Geissler E, et al. Materials, 2019, 12(24), 4208.
27 Tamborini L H, Casco M E, Militello M P, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 449.
28 Lee K T, Oh S M. Chemical Communications, 2002, 22, 2722.
29 Balach J, Tamborini L, Sapag K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 343.
30 Yang X Q, Huang H, Zhang G Q, et al. Materials Chemistry and Phy-sics, 2015, 149-150, 657.
31 Shen T H, Wu X L, Zhang Z H. Journal of Sol-Gel Science and Technology, 2017, 83(1), 81.
32 Liu Q, He P P, Qian X C, et al. Zeitschrift für Anorganische und Allgemeine Chemie, 2018, 644(3), 155.
33 Rey-Raap N, Rodríguez-Sanchez S, Alonso-Buenaposada I D, et al. Microporous and Mesoporous Materials, 2015, 217, 39.
34 Bruno M M, Cotella N G, Miras M C,et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362(1-3), 28.
35 Wu D C, Fu R W, Dresselhaus M S, et al. Carbon, 2006, 44(4), 675.
36 Haghgoo M, Yousefi A A, Mehr M J Z. Iranian Polymer Journal, 2012, 21(4), 211.
37 Wang S S, Xu Y L, Yan M F, et al. Journal of Non-Crystalline Solids, 2018, 499, 101.
38 Hasegawa G, Yano T, Akamatsu H, et al. Journal of Sol-Gel Science and Technology, 2020, 95, 801.
39 Libbrecht W, Verberckmoes A, Thybaut J W. Langmuir the Acs Journal of Surfaces & Colloids, 2017, 33(27), 6769.
40 Liu D, Hu Y Y, Zeng C, et al. Acta Physico-Chimica Sinica, 2016, 32(12), 2826(in Chinese).
刘丹, 胡艳艳, 曾超, 等. 物理化学学报, 2016, 32(12), 2826.
41 Zhang F Q, Meng Y, Gu D. Chemistry of Materials, 2006, 18, 5279.
42 Mohammaddokht H, Mahdizadeh S M, Khodeir E, et al. Materials Research Express, 2019, 6(9), 095010.
43 Haghgoo M, Yousefi A A, Mehr M J Z, et al. Microporous and Mesoporous Materials, 2014, 184, 97.
44 Chen L, Deng J Q, Song Y D, et al. ChemElectroChem, 2019, 6(22), 5750.
45 Haghgoo M, Yousefi A A, Mehr M J Z, et al. Journal of Materials Science, 2015, 50(18), 6007.
46 Hoffmann H. Advances in Colloid and Interface Science, 2012, 178, 21.
47 Guo K, Song H H, Chen X H, et al. Physical Chemistry Chemical Physics: PCCP, 2014, 16(23), 11603.
48 Canal-Rodríguez M, Arenillas A, Rey-Raap N, et al. Carbon, 2017, 118, 291.
49 Wang X, Lu L L, Yu Z L, et al. Angewandte Chemie, 2015, 54(8), 2397.
50 Yu Z L, Wu Z Y, Xin S, et al. Chemistry of Materials, 2014, 26(24), 6915.
51 Awadallah F A, Al-Muhtaseb S A. Applied Sciences, 2019, 9(21), 4582.
52 Awadallah F A, Al-Muhtaseb S A. Materials, 2019, 12(23), 3847.
53 Yu Z L, Li G C, Fechler N, et al. Angewandte Chemie International Edition, 2016, 55(47), 14623.
54 Wang X, Zhang M Q, Kou R, et al. Advanced Functional Materials, 2016, 26(28), 5086.
55 Xu J, Xin S, Liu J W, et al. Advanced Functional Materials, 2016, 26(21), 3580.
56 Zhang B X, Zhang Y B, Li J Y, et al. Cellulose, 2020, 27(9), 5029.
57 Xu Y L, Wang S S, Yan M F, et al. Journal of Porous Materials, 2018, 25(5), 1505.
58 Kistler S S. The Journal of Physical Chemistry, 1932, 36(1), 52.
59 Czakkel O, Marthi K, Geissler E, et al. Microporous and Mesoporous Materials, 2005, 86(1-3), 124.
60 Dervin S, Pillai S C. In:Sol-gel materials for energy, environment and electronic applications, Pillai S C, Hehir S, ed. Springer, Ireland, 2017, pp, 1.
61 El-Naggar M E. International Journal of Biological Macromolecules, 2020, 145, 1115.
62 Zhang H Y, Liu C J, Chen L, et al. Chemical Engineering Science, 2019, 201, 50.
63 Wang W L, Fang Y, Ni X W, et al. Carbohydrate Polymers, 2019, 224, 115129.
64 Chavhan M P, Ganguly S. Materials Technology, 2017, 32(12), 744.
65 Minović T Z, Gulicovski J J, Stoiljković M M, et al. Microporous and Mesoporous Materials, 2015, 201, 271.
66 Wu D C, Fu R W. Journal of Porous Materials, 2007, 15(1), 29.
67 İahin, Yaprak Özbakır, Zeynep İnönü, et al. Gels, 2018, 4(1), 3.
68 Chavhan M P, Ganguly S. Journal of Sol-Gel Science and Technology, 2018, 88(2), 395.
69 Scherer G W. Journal of the American Ceramic Society, 1990, 73(1), 3.
70 Zapata-Benabithe Z, Moreno-Castilla C, Carrasco-Marín F. Journal of Sol-Gel Science and Technology, 2015, 75(2), 407.
71 Zhao S Y, Siqueira G, Drdova S, et al. Nature, 2020, 584(7821), 387.
72 Jiang Y Q, Xu Z, Huang T Q, et al. Advanced Functional Materials, 2018, 28(16), 170702.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[3] 张铖, 王玲, 姚燕, 史鑫宇. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 21030009-4.
[4] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[5] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[6] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[7] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[8] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[9] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[10] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[11] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[12] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[13] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[14] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[15] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed