Synthesis and Application of Hyperbranched Polymers
ZHAN Ningning1, ZHANG Lifeng2,3, ZHAO Xinxing2, QIN Lijuan2, TENG Houkai2
1 CNOOC Energy Technology & Service Limited-Drilling & Production Co., Tianjin 300450, China 2 CNOOC Tianjin Chemical Research and Design Institute Compony Limited, Tianjin 300131, China 3 School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
Abstract: Due to their unique structures, hyperbranched polymers exhibit excellent properties, such as low viscosity, high rheological property, good solubility and great amounts of terminal functional groups, which inspire the keen interests from researchers. Moreover, their simple synthesis methods and broad applications arouse more concerns of the polymer scientists. In this paper, we review the latest research trends of hyperbranched polymers, and introduce the synthesis methods of hyperbranched polymers and their applications in the fields of biomedicine, nano-science, catalyst, sensors, etc. The synthesis and their application of hyperbranched polymers aim to present the charm of the field, and provide reference for relevant scholars.
1 Wu W, Tang R,Li Q, et al. Chemical Society Reviews, 2015, 44, 3997. 2 Zheng Y, Li S, Weng Z, et al. Chemical Society Reviews, 2015, 44, 4091. 3 Trache D, Hussin M H, Haafiz M K M, et al. Nanoscale, 2017, 9, 1763. 4 De France K J, Babi M, Vapaavuori J, et al. ACS Applied Materials & Interfaces, 2019, 11, 6325. 5 Sun F, Luo X, Kang L, et al. Polymer Chemistry, 2015, 6, 1214. 6 Lewis L, Hatzikiriakos S G, Hamad W Y, et al. ACS Macro Letters, 2019, 8, 486. 7 Kricheldorf H R, Zang Q Z, Schwarz G. Polymer, 1982, 23, 1821. 8 Giardiello M, McDonald T O, Martin P, et al. Journal of Materials Che-mistry, 2012, 22, 24744. 9 Harbron R L, McDonald T O, Rannard S P, et al. Chemical Communications, 2012, 48, 1592. 10 Yan D Y, Zhou Y F, Hou J. Science, 2004, 303, 65. 11 Hujaya S D, Manninen A, Kling K, et al. Journal of Colloid and Interface Science, 2019, 553, 71. 12 Du H, Liu W, Zhang M, et al. Carbohydrate Polymers, 2019, 209, 130. 13 Sun X Y, Huang W, Zhou Y F, et al. Chemical Physics, 2010, 12, 11948. 14 Liu J Y, Pang Y W, Huang X Y, et al. Biomaterials, 2010, 31, 1334. 15 Aissa K, Karaaslan M A, Renneckar S, et al. Biomacromolecules, 2019, 20, 3087. 16 Kumar A, Ramakrishnan S. Macromolecules, 1996, 29, 2524. 17 Kumar A, Ramakrishnan S. Journal of Polymer Science: Part A-Polymer Chemistry, 1996, 34, 839. 18 Van Benthem R A, Jansen J. patent, EP1036106, 2000. 19 Hobson L J, Kenwright A M, Feast W. Journal of the Chemical Society, 1997, 1, 877. 20 Hobson L J, Feast W J. Polymer, 1999, 40, 1279. 21 Ching Y C, Gunathilake T M S, Chuah C H, et al. Cellulose, 2019, 26, 5467. 22 Kim Y H, Webster O W. Journal of the American Chemical Society, 1988, 29, 310. 23 Ihre H, Hult A, Söderlind E. Journal of the American Chemical Society, 1996, 118, 6388. 24 Kadlecova Z, Baldi L, Hacker D, et al. Biomacromolecules, 2012, 13, 3127. 25 Aoshima S, Frechet J M, Orubbs R B. Polymer Preparation, 1995, 36, 531. 26 Flory P J. Journal of the American Chemical Society, 1952, 74, 2718. 27 Kambouris P, Hawker C. Journal of the American Chemical Society, 1993, 25, 2717. 28 Malmstrom E, Johansson M, Hult A. Macromolecules, 1995, 28, 1698. 29 Malmstrom E, Hult A. Macromolecules, 1996, 29, 1222. 30 Sunder A, Muelhaupt R, Haag R, et al. Advanced Materials, 2000, 12, 235. 31 Sunder A, Hanselmann R, Frey H, et al. Macromolecules, 1999, 32, 4240. 32 Magnusson H, Malmström E, Hult A. Macromolecules, 2001, 34, 5786. 33 Cheng K C, Chuang T H, Chang J S, et al. Macromolecules, 2005, 38, 8252. 34 Cheng K C. Polymer, 2003, 44, 1259. 35 Mock A, Burgath A, Hanselmann R, et al. Macromolecules, 2001, 34, 7692. 36 Bharathi P, Moore J S. Macromolecules, 2000, 33, 3212. 37 Hanselmann R, Hölter D, Frey H. Macromolecules, 1998, 31, 3790. 38 Radke W, Litvinenko G, Müller A H E. Macromolecules, 1998, 31, 239. 39 Yan D Y, Zhou Z P, Müller A H E. Macromolecules, 1999, 32, 245. 40 Zhou Z P, Yan D Y. Polymer, 2000, 41, 4549. 41 Li N, Zhang H, Xiao Y, et al. Biomacromolecules, 2019, 20, 937. 42 Yan D Y, Gao C, Frey H. Canadian Journal of Statistics, 2011, 18, 156. 43 Frechet J M J, Henmi M, Gitsov I, et al. Science, 1995, 269, 1080. 44 Sezer N, Koç M. Surfaces and Interfaces, 2019, 14, 1. 45 Simon P F W, Müller A H E. Macromolecular Rapid Communications, 1997, 18, 865. 46 Simon P F W, Müller A H E. Macromolecules, 2001, 34, 6206. 47 Sakamoto K, Aimiya T, Kira M. Chemistry Letters, 1997, 1245. 48 Liu H, Wilén C E. Macromolecules, 2001, 34, 5067. 49 Coessens V, Pintauer T, Matyjaszewski K. Progress in Polymer Science, 2001, 26, 337. 50 Patten T E, Matyjaszewski K. Advanced Materials, 1998, 10, 901. 51 Zhuang Y Y, Su Y, Peng Y, et al. Biomacromolecules, 2014, 15, 1408. 52 Kolb H C, Finn M G, Sharpless K B. Angewandte Chemie International Edition, 2001, 40, 2004. 53 Yousuf S K, Taneja S C, Mukherjee D. The Journal of Organic Chemistry, 2010, 75, 3097. 54 Wilkinson B L, Bornaghi L F, Houston T A, et al. Journal of Medicinal Chemistry, 2006, 49, 6539. 55 Wang C, Wu J, Xu Z K. Journal of Medicinal Chemistry, 2010, 31, 1078. 56 Scheel A J, Komber H, Voit B I. Macromolecular Rapid Communications, 2004, 25, 1175. 57 Li H, Wu H, Zhao E, et al. Macromolecules, 2013, 46, 3907. 58 Xue L, Yang Z, Wang D, et al. Journal of Organometallic Chemistry, 2013, 732, 1. 59 Rossow T, Heyman J A, Ehrlicher A J, et al. Journal of the American Chemical Society, 2012, 134, 4983. 60 Deng F, Bisht K S, Gross R A, et al. Macromolecules, 1999, 32, 5159. 61 Skaria S, Smet M, Frey H. Macromolecular Rapid Communications, 2002, 23, 292. 62 García-Arrazola R, López-Guerrero D A, Gimeno M, et al. Fluids, 2009, 51, 197. 63 Mena M, López-Luna A, Shirai K, et al. Bioprocess and Biosystems Engineering, 2013, 36, 383. 64 Xu F, Zhong J, Qian X, et al. Polymer Chemistry, 2013, 4, 3480. 65 Hunsen M, Azim A, Mang H, et al. Macromolecules, 2007, 40, 148. 66 Hunsen M, Abul A, Xie W, et al. Biomacromolecules, 2008, 9, 518. 67 Li Q, Li G, Yu S, et al. Process Biochemistry, 2011, 46, 253. 68 Ma J, LiQ, Song B, et al. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 151. 69 Ishizu K, Takahashi D, Takeda H. Polymer, 2000, 41, 6081. 70 Nguyen C, Hawker C J, Miller R D, et al. Macromolecules, 2000, 33, 4281. 71 Radowski M R, Shukla A, Berlepsch H, et al. Angewandte Chemie International Edition, 2007, 46, 1265. 72 Kim J H, Park K, Nam H Y, et al. Progress in Polymer Science, 2007, 32, 1031. 73 Chen K J, Wolahan S M, Wang H, et al. Biomaterials, 2011, 32, 2160. 74 Thurecht K J, Blakey I, Peng H,et al. Journal of the American Chemical Society, 2010, 132, 5336. 75 Xu H P, Cao W, Zhang X. Accounts of Chemical Research, 2013, 46, 1647. 76 Kumar K R, Brooks D E. Macromolecular Rapid Communications, 2005, 26, 155. 77 Sunder A, Kramer M, Hanselmann R. Angewandte Chemie International Edition, 1999, 38, 3552. 78 Hofmann A M, Wurm F, Hu¨hn E, et al. Biomacromolecules, 2010, 11, 568. 79 Hu X, Zhou L, Gao C. Colloid and Polymer Science, 2011, 289, 1299. 80 Zhu Q, Qiu F, Zhu B S, et al. RSC Advance, 2013, 3, 2071. 81 Chechik V, Zhao M, Crooks R M. Journal of the American Chemical Society, 1999, 121, 4910. 82 Zhu L J, Shi Y F, Tu C L, et al. Langmuir, 2010, 26, 8875. 83 Gladitz M, Reinemann S, Radusch H J. Macromolecular Materials and Engineering, 2009, 294, 178. 84 Zhou L, Gao C, Xu W. Journal of Materials Chemistry, 2010, 20, 5675. 85 Zhou L, Gao C, Hu X Z, et al. Journal of Materials Chemistry A, 2011, 23, 1461. 86 Keilitz J, Schwarze M, Nowag S, et al. Chemistry Europe, 2010, 2, 863. 87 WeiX Z, Zhu B K, Xu Y Y. Colloid and Polymer Science, 2005, 284, 102. 88 Liang H L, Yu D M, Xie Y C, et al. Polymer Engineering and Science, 2009, 49, 2189. 89 Kakati N, Mahapatra S S, Karak N. Pure and Applied Chemistry, 2008, 45, 658. 90 Richter T V, Schuler F, Thomann R, et al. Macromolecular Rapid Communications, 2009, 30, 579. 91 Frechet J M J, Tomalia D A. Chichester, 2001, 569. 92 Mecking S, Thomann R, Frey H, et al. Macromolecules, 2000, 33, 3958. 93 Zhou Y F, Huang W, Liu J Y, et al. Advanced Materials, 2010, 22, 4567. 94 Yan D Y, Zhou Y F, Hou J. Science, 2004, 303, 65. 95 You Y Z, Hong C Y, Pan C Y, et al. Advanced Materials, 2004, 16, 1953. 96 Tao W, Liu Y, Jiang B B, et al. Journal of the American Chemical Society, 2012, 134, 762. 97 Ornatska M, Bergman K N, Rybak B, et al. Angewandte Chemie International Edition, 2004, 43, 5246. 98 Ornatska M, Peleshanko S, Genson K L, et al. Journal of the American Chemical Society, 2004, 126, 9675. 99 Yeh P Y J, Kainthan R K, Zou Y, et al. Langmuir, 2008, 24, 4907. 100Liu X, Li H, Xu Z, et al. Analytica Chimica Acta, 2013, 797, 40. 101Shen G, Liu M, Cai X, et al. Analytica Chimica Acta, 2008, 630, 75. 102He G J, Li G Q, Ying H, et al. Fuel, 2015, 161, 295.