Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 616-626    
  高分子与聚合物基复合材料 |
超支化聚合物的合成及应用
詹宁宁1, 张丽锋2,3, 赵新星2, 秦立娟2, 滕厚开2
1 中海油能源发展股份有限公司工程技术分公司,天津 300450
2 中海油天津化工研究设计院有限公司,天津 300131
3 天津大学化工学院,天津 300072
Synthesis and Application of Hyperbranched Polymers
ZHAN Ningning1, ZHANG Lifeng2,3, ZHAO Xinxing2, QIN Lijuan2, TENG Houkai2
1 CNOOC Energy Technology & Service Limited-Drilling & Production Co., Tianjin 300450, China
2 CNOOC Tianjin Chemical Research and Design Institute Compony Limited, Tianjin 300131, China
3 School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 4643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超支化聚合物因其独特的结构特征,如低黏度、高流变性、良好的溶解性以及大量可修饰的末端官能团等,激发了科学家浓厚的兴趣;加之其简便的合成方法和广泛的应用领域更引起了聚合物科学家们的关注与应用研究。本文对超支化聚合物的最新研究动态进行了综述,介绍了超支化聚合物合成的方法和在生物医学、纳米科学、催化剂、功能化分子材料等方面的应用,旨在向人们呈现该领域的魅力,并为相关的学者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹宁宁
张丽锋
赵新星
秦立娟
滕厚开
关键词:  超支化聚合物  合成方法  功能化  纳米科学    
Abstract: Due to their unique structures, hyperbranched polymers exhibit excellent properties, such as low viscosity, high rheological property, good solubility and great amounts of terminal functional groups, which inspire the keen interests from researchers. Moreover, their simple synthesis methods and broad applications arouse more concerns of the polymer scientists. In this paper, we review the latest research trends of hyperbranched polymers, and introduce the synthesis methods of hyperbranched polymers and their applications in the fields of biomedicine, nano-science, catalyst, sensors, etc. The synthesis and their application of hyperbranched polymers aim to present the charm of the field, and provide reference for relevant scholars.
Key words:  hyperbranched polymer    synthesis methods    functionalization    nano-science
                    发布日期:  2021-12-09
ZTFLH:  TQ31  
基金资助: 中国博士后科学基金(2019M661034)
通讯作者:  zlifeng@zju.edu.cn   
作者简介:  詹宁宁,2014年毕业于东北石油大学,工学硕士,毕业后在中海油能源发展股份有限公司工程技术分公司工作。以第一作者在国内外学术期刊上发表论文3篇。研究工作主要围绕油气井完井工程、钻完井液展开。
张丽锋,2018年毕业于浙江大学化学系,理学博士,毕业后以博士后身份加入天津大学冯亚青老师课题组继续深造。以第一作者在国内外学术期刊上发表论文10余篇,申请国家发明专利8项,其中授权5项。同时,获得浙江大学“优秀博士”称号;并担任工业水处理等多个学术期刊的审稿人。研究工作主要围绕超支化聚合物在油田化学的基础理论和应用研究展开。
引用本文:    
詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
ZHAN Ningning, ZHANG Lifeng, ZHAO Xinxing, QIN Lijuan, TENG Houkai. Synthesis and Application of Hyperbranched Polymers. Materials Reports, 2021, 35(z2): 616-626.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/616
1 Wu W, Tang R,Li Q, et al. Chemical Society Reviews, 2015, 44, 3997.
2 Zheng Y, Li S, Weng Z, et al. Chemical Society Reviews, 2015, 44, 4091.
3 Trache D, Hussin M H, Haafiz M K M, et al. Nanoscale, 2017, 9, 1763.
4 De France K J, Babi M, Vapaavuori J, et al. ACS Applied Materials & Interfaces, 2019, 11, 6325.
5 Sun F, Luo X, Kang L, et al. Polymer Chemistry, 2015, 6, 1214.
6 Lewis L, Hatzikiriakos S G, Hamad W Y, et al. ACS Macro Letters, 2019, 8, 486.
7 Kricheldorf H R, Zang Q Z, Schwarz G. Polymer, 1982, 23, 1821.
8 Giardiello M, McDonald T O, Martin P, et al. Journal of Materials Che-mistry, 2012, 22, 24744.
9 Harbron R L, McDonald T O, Rannard S P, et al. Chemical Communications, 2012, 48, 1592.
10 Yan D Y, Zhou Y F, Hou J. Science, 2004, 303, 65.
11 Hujaya S D, Manninen A, Kling K, et al. Journal of Colloid and Interface Science, 2019, 553, 71.
12 Du H, Liu W, Zhang M, et al. Carbohydrate Polymers, 2019, 209, 130.
13 Sun X Y, Huang W, Zhou Y F, et al. Chemical Physics, 2010, 12, 11948.
14 Liu J Y, Pang Y W, Huang X Y, et al. Biomaterials, 2010, 31, 1334.
15 Aissa K, Karaaslan M A, Renneckar S, et al. Biomacromolecules, 2019, 20, 3087.
16 Kumar A, Ramakrishnan S. Macromolecules, 1996, 29, 2524.
17 Kumar A, Ramakrishnan S. Journal of Polymer Science: Part A-Polymer Chemistry, 1996, 34, 839.
18 Van Benthem R A, Jansen J. patent, EP1036106, 2000.
19 Hobson L J, Kenwright A M, Feast W. Journal of the Chemical Society, 1997, 1, 877.
20 Hobson L J, Feast W J. Polymer, 1999, 40, 1279.
21 Ching Y C, Gunathilake T M S, Chuah C H, et al. Cellulose, 2019, 26, 5467.
22 Kim Y H, Webster O W. Journal of the American Chemical Society, 1988, 29, 310.
23 Ihre H, Hult A, Söderlind E. Journal of the American Chemical Society, 1996, 118, 6388.
24 Kadlecova Z, Baldi L, Hacker D, et al. Biomacromolecules, 2012, 13, 3127.
25 Aoshima S, Frechet J M, Orubbs R B. Polymer Preparation, 1995, 36, 531.
26 Flory P J. Journal of the American Chemical Society, 1952, 74, 2718.
27 Kambouris P, Hawker C. Journal of the American Chemical Society, 1993, 25, 2717.
28 Malmstrom E, Johansson M, Hult A. Macromolecules, 1995, 28, 1698.
29 Malmstrom E, Hult A. Macromolecules, 1996, 29, 1222.
30 Sunder A, Muelhaupt R, Haag R, et al. Advanced Materials, 2000, 12, 235.
31 Sunder A, Hanselmann R, Frey H, et al. Macromolecules, 1999, 32, 4240.
32 Magnusson H, Malmström E, Hult A. Macromolecules, 2001, 34, 5786.
33 Cheng K C, Chuang T H, Chang J S, et al. Macromolecules, 2005, 38, 8252.
34 Cheng K C. Polymer, 2003, 44, 1259.
35 Mock A, Burgath A, Hanselmann R, et al. Macromolecules, 2001, 34, 7692.
36 Bharathi P, Moore J S. Macromolecules, 2000, 33, 3212.
37 Hanselmann R, Hölter D, Frey H. Macromolecules, 1998, 31, 3790.
38 Radke W, Litvinenko G, Müller A H E. Macromolecules, 1998, 31, 239.
39 Yan D Y, Zhou Z P, Müller A H E. Macromolecules, 1999, 32, 245.
40 Zhou Z P, Yan D Y. Polymer, 2000, 41, 4549.
41 Li N, Zhang H, Xiao Y, et al. Biomacromolecules, 2019, 20, 937.
42 Yan D Y, Gao C, Frey H. Canadian Journal of Statistics, 2011, 18, 156.
43 Frechet J M J, Henmi M, Gitsov I, et al. Science, 1995, 269, 1080.
44 Sezer N, Koç M. Surfaces and Interfaces, 2019, 14, 1.
45 Simon P F W, Müller A H E. Macromolecular Rapid Communications, 1997, 18, 865.
46 Simon P F W, Müller A H E. Macromolecules, 2001, 34, 6206.
47 Sakamoto K, Aimiya T, Kira M. Chemistry Letters, 1997, 1245.
48 Liu H, Wilén C E. Macromolecules, 2001, 34, 5067.
49 Coessens V, Pintauer T, Matyjaszewski K. Progress in Polymer Science, 2001, 26, 337.
50 Patten T E, Matyjaszewski K. Advanced Materials, 1998, 10, 901.
51 Zhuang Y Y, Su Y, Peng Y, et al. Biomacromolecules, 2014, 15, 1408.
52 Kolb H C, Finn M G, Sharpless K B. Angewandte Chemie International Edition, 2001, 40, 2004.
53 Yousuf S K, Taneja S C, Mukherjee D. The Journal of Organic Chemistry, 2010, 75, 3097.
54 Wilkinson B L, Bornaghi L F, Houston T A, et al. Journal of Medicinal Chemistry, 2006, 49, 6539.
55 Wang C, Wu J, Xu Z K. Journal of Medicinal Chemistry, 2010, 31, 1078.
56 Scheel A J, Komber H, Voit B I. Macromolecular Rapid Communications, 2004, 25, 1175.
57 Li H, Wu H, Zhao E, et al. Macromolecules, 2013, 46, 3907.
58 Xue L, Yang Z, Wang D, et al. Journal of Organometallic Chemistry, 2013, 732, 1.
59 Rossow T, Heyman J A, Ehrlicher A J, et al. Journal of the American Chemical Society, 2012, 134, 4983.
60 Deng F, Bisht K S, Gross R A, et al. Macromolecules, 1999, 32, 5159.
61 Skaria S, Smet M, Frey H. Macromolecular Rapid Communications, 2002, 23, 292.
62 García-Arrazola R, López-Guerrero D A, Gimeno M, et al. Fluids, 2009, 51, 197.
63 Mena M, López-Luna A, Shirai K, et al. Bioprocess and Biosystems Engineering, 2013, 36, 383.
64 Xu F, Zhong J, Qian X, et al. Polymer Chemistry, 2013, 4, 3480.
65 Hunsen M, Azim A, Mang H, et al. Macromolecules, 2007, 40, 148.
66 Hunsen M, Abul A, Xie W, et al. Biomacromolecules, 2008, 9, 518.
67 Li Q, Li G, Yu S, et al. Process Biochemistry, 2011, 46, 253.
68 Ma J, LiQ, Song B, et al. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 151.
69 Ishizu K, Takahashi D, Takeda H. Polymer, 2000, 41, 6081.
70 Nguyen C, Hawker C J, Miller R D, et al. Macromolecules, 2000, 33, 4281.
71 Radowski M R, Shukla A, Berlepsch H, et al. Angewandte Chemie International Edition, 2007, 46, 1265.
72 Kim J H, Park K, Nam H Y, et al. Progress in Polymer Science, 2007, 32, 1031.
73 Chen K J, Wolahan S M, Wang H, et al. Biomaterials, 2011, 32, 2160.
74 Thurecht K J, Blakey I, Peng H,et al. Journal of the American Chemical Society, 2010, 132, 5336.
75 Xu H P, Cao W, Zhang X. Accounts of Chemical Research, 2013, 46, 1647.
76 Kumar K R, Brooks D E. Macromolecular Rapid Communications, 2005, 26, 155.
77 Sunder A, Kramer M, Hanselmann R. Angewandte Chemie International Edition, 1999, 38, 3552.
78 Hofmann A M, Wurm F, Hu¨hn E, et al. Biomacromolecules, 2010, 11, 568.
79 Hu X, Zhou L, Gao C. Colloid and Polymer Science, 2011, 289, 1299.
80 Zhu Q, Qiu F, Zhu B S, et al. RSC Advance, 2013, 3, 2071.
81 Chechik V, Zhao M, Crooks R M. Journal of the American Chemical Society, 1999, 121, 4910.
82 Zhu L J, Shi Y F, Tu C L, et al. Langmuir, 2010, 26, 8875.
83 Gladitz M, Reinemann S, Radusch H J. Macromolecular Materials and Engineering, 2009, 294, 178.
84 Zhou L, Gao C, Xu W. Journal of Materials Chemistry, 2010, 20, 5675.
85 Zhou L, Gao C, Hu X Z, et al. Journal of Materials Chemistry A, 2011, 23, 1461.
86 Keilitz J, Schwarze M, Nowag S, et al. Chemistry Europe, 2010, 2, 863.
87 WeiX Z, Zhu B K, Xu Y Y. Colloid and Polymer Science, 2005, 284, 102.
88 Liang H L, Yu D M, Xie Y C, et al. Polymer Engineering and Science, 2009, 49, 2189.
89 Kakati N, Mahapatra S S, Karak N. Pure and Applied Chemistry, 2008, 45, 658.
90 Richter T V, Schuler F, Thomann R, et al. Macromolecular Rapid Communications, 2009, 30, 579.
91 Frechet J M J, Tomalia D A. Chichester, 2001, 569.
92 Mecking S, Thomann R, Frey H, et al. Macromolecules, 2000, 33, 3958.
93 Zhou Y F, Huang W, Liu J Y, et al. Advanced Materials, 2010, 22, 4567.
94 Yan D Y, Zhou Y F, Hou J. Science, 2004, 303, 65.
95 You Y Z, Hong C Y, Pan C Y, et al. Advanced Materials, 2004, 16, 1953.
96 Tao W, Liu Y, Jiang B B, et al. Journal of the American Chemical Society, 2012, 134, 762.
97 Ornatska M, Bergman K N, Rybak B, et al. Angewandte Chemie International Edition, 2004, 43, 5246.
98 Ornatska M, Peleshanko S, Genson K L, et al. Journal of the American Chemical Society, 2004, 126, 9675.
99 Yeh P Y J, Kainthan R K, Zou Y, et al. Langmuir, 2008, 24, 4907.
100Liu X, Li H, Xu Z, et al. Analytica Chimica Acta, 2013, 797, 40.
101Shen G, Liu M, Cai X, et al. Analytica Chimica Acta, 2008, 630, 75.
102He G J, Li G Q, Ying H, et al. Fuel, 2015, 161, 295.
[1] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[2] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[3] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[4] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[5] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[6] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[7] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[8] 张亚琼, 林兴安, 潘齐超, 钱思昊, 张述华, 邱高, 朱波. 图案化与生物功能化聚3,4-乙烯二氧噻吩生物界面[J]. 材料导报, 2021, 35(20): 20183-20189.
[9] 杨正芳, 张悦, 蔡金霄, 刘志勇, 胡觉. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19): 19062-19069.
[10] 赵笙良, 刘飞燕, 陈丽琼. 金纳米材料光学传感快速检测方法研究要点初探[J]. 材料导报, 2021, 35(19): 19099-19115.
[11] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[12] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[13] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[14] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[15] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed