Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 329-332    
  金属与金属基复合材料 |
稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响
宋金涛1, 刘海涛1, 宋克兴1,2,3, 安士忠1, 程楚1, 华云筱1, 周延军1, 张凌亮1, 王国杰1, 田安福1, 杨璐瑶1
1 河南科技大学材料科学与工程学院,洛阳 471023
2 河南省有色金属材料科学与加工技术重点实验室,洛阳 471023
3 有色金属共性技术河南省协同创新中心,洛阳 471023
Effect of Interaction Between Ce and P on Grain Size and Conductivity of Pure Copper
SONG Jintao1, LIU Haitao1, SONG Kexing1,2,3, AN Shizhong1, CHENG Chu1, HUA Yunxiao1, ZHOU Yanjun1, ZHANG Lingliang1, WANG Guojie1, TIAN Anfu1, YANG Luyao1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Henan Key Laboratory of Non-ferrous Materials Science & Processing Technology, Luoyang 471023, China
3 Collaborative Innovation Center of Nonferrous Metals, Henan Province, Luoyang 471023, China
下载:  全 文 ( PDF ) ( 6624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在纯铜铸锭中添加不同含量的稀土铈和磷元素,借助电导率测试和微观组织结构分析,研究了稀土铈与磷元素相互作用对纯铜晶粒尺寸和导电性能的影响,阐明了铈、磷元素相互作用影响含磷纯铜晶粒尺寸与导电性能的有关机理。结果表明:纯铜中稀土铈与磷元素相互作用可显著细化铸锭晶粒尺寸,并提高其电导率。含0.016%磷纯铜中添加稀土铈后,晶粒尺寸可由963.67 μm减小至198.75 μm,晶粒形态由柱状晶转变为等轴晶;电导率随稀土铈含量的增加呈先提高后降低的趋势,铈含量增加至0.014%时,电导率可由81.16% IACS提高至96.14% IACS。这主要与稀土铈可以和磷相互作用形成铈磷化合物有关;一方面,铈磷化合物的形成可抑制磷元素凝固偏析而导致的柱状晶长大,并起到钉扎阻碍晶粒长大的作用;另一方面,可降低铜中固溶磷含量而提高导电性能,但铈过量时将会导致晶界和第二相数量过多、铜材纯度降低,进而影响电子散射而降低其导电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋金涛
刘海涛
宋克兴
安士忠
程楚
华云筱
周延军
张凌亮
王国杰
田安福
杨璐瑶
关键词:  纯铜  铈磷化合物  细化晶粒  电导率    
Abstract: The effect of the interaction between Ce and P on the grain size and conductivity of pure copper was studied through the electrical conductivity test and microstructure analysis after adding different Ce and P contents to the pure copper. The results showed that the interaction between Ce and P can remarkably refine the grain size and improve its electrical conductivity. In the experiment, the grain size of pure copper containing 0.016% P decreased from 963.67 μm to 198.75 μm after adding rare earth Ce. The electrical conductivity increased first and then decreased with increasing of Ce content. In particular, the electrical conductivity increased from 81.16%IACS to 96.14%IACS when the Ce content increased up to 0.014%. Above-mentioned experimental phenomena was mainly related to the cerium phosphorus compound formed by the interaction between Ce and P elements. On the one hand, the columnar crystal growth caused by solidification segregation of P element could be inhibited through the formation of cerium phosphorus compound, and the role of hindering grain growth about the compound. On the other hand, the content of solid dissolved phosphorus could be reduced through the formation of cerium phosphorus compound, which can remarkably improve electrical conductivity. However, the electrical conductivity could be reduced by excessive Ce element with acting as the role of “impurity”.
Key words:  pure copper    cerium phosphorus compound    refined grain    conductivity
                    发布日期:  2021-12-09
ZTFLH:  TF807  
基金资助: 国家自然科学基金(52071133);河南省青年人才托举工程项目(2021HYTP018)
通讯作者:  kxsong@mail.haust.edu.cn   
作者简介:  宋金涛,硕士研究生,2019年9月进入河南科技大学材料科学与工程学院学习。主要从事铜合金合金材料的研究。
宋克兴,博士,教授,博士研究生导师,2 项国家科技进步二等奖获得者。享受国务院特殊津贴专家,中原学者。主要从事高性能铜合金及先进制备加工技术。
引用本文:    
宋金涛, 刘海涛, 宋克兴, 安士忠, 程楚, 华云筱, 周延军, 张凌亮, 王国杰, 田安福, 杨璐瑶. 稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响[J]. 材料导报, 2021, 35(z2): 329-332.
SONG Jintao, LIU Haitao, SONG Kexing, AN Shizhong, CHENG Chu, HUA Yunxiao, ZHOU Yanjun, ZHANG Lingliang, WANG Guojie, TIAN Anfu, YANG Luyao. Effect of Interaction Between Ce and P on Grain Size and Conductivity of Pure Copper. Materials Reports, 2021, 35(z2): 329-332.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/329
1 李海燕, 周轩, 卢雪琼, 等. 中国有色金属学报, 2017, 27(1), 102.
2 Wang J H, Jiang X X, Li S Z, et al. Chinese Science Bulletin, 1995, 40(7), 605.
3 Zhong W H, Ou F W, Wei H H, et al. Metal Working, 2013,19, 71.
4 Chen Y, Cheng M, Song H W, et al.Journal of Rare Earths, 2014, 32(11), 1056.
5 Li J L, Chang L L, Li S L, et al.Journal of Rare Earths, 2018, 36(4), 424.
6 Li H H, Liu X, Li Y, et al.Transactions of Nonferrous Metals Society of China, 2020, 30(6), 1574.
7 刘政,谌庆春,郭颂,等.稀有金属材料与工程, 2015, 44(4), 859.
8 帅歌旺. 高强高导铜基引线框架材料研制及稀土元素在铜合金中作用机制研究. 硕士学位论文, 南昌大学, 2005.
9 罗果萍, 张学锋, 邬虎林, 等. 稀土, 2005, 26(2), 41.
10 赵炳怡. 纳米TiC/Ti细化剂的制备及其对Al-Cu-Mg合金组织和力学性能的影响. 硕士学位论文, 华中科技大学, 2019.
11 刘明洋. H68黄铜的晶粒细化及对组织和性能的影响. 硕士学位论文, 大连理工大学, 2016.
12 李海红. 稀土铈在含Pb杂铜和紫杂铜中的除杂与微合金化机理研究. 博士学位论文, 中国科学院大学, 2016.
13 林高用, 孙利平, 文继有, 等. 金属热处理, 2009, 34(2),51.
14 Sha A X, Wang F M, Wu C J, et al.Journal of Rare Earths, 2000, 18(1), 50.
15 陈俊孚. 高碳钢中稀土与磷作用机制的研究. 硕士学位论文, 内蒙古科技大学, 2008.
16 Wu J H, Zhang S H, Song H W, et al.Materials Science and Technology, 2018, 34(14), 1759.
17 Sun X Y, Liu X G, Wang L L, et al.Corrosion Science and Protection Technology, 2014, 26(3), 228.
18 周健, 郭建亭. 金属学报, 2004, 40(1), 67.
[1] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[2] 江文正, 章卫钢, 子绚, 刘贤淼, 张文标, 李文珠. 二次炭化温度对竹炭导电性能及结构的影响[J]. 材料导报, 2021, 35(8): 8023-8027.
[3] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[4] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[5] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[6] 王子伊, 薛松柏, 王剑豪, 刘晗, 温丽. 添加合金元素改善Au-Ge钎料组织及性能的研究进展[J]. 材料导报, 2020, 34(23): 23145-23153.
[7] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[8] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[9] 崔凯, 虞澜, 刘安安, 秦梦, 宋世金, 沈艳. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366.
[10] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[11] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[12] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[13] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[14] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[15] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed