Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 306-310    
  金属与金属基复合材料 |
Co修饰的碳载Pt纳米粒子催化剂的制备与表征
吴国玉1,2, 郑晔3, 王明涌2, 邢志军3
1 中国黄金集团有限公司,北京 100011
2 北京科技大学钢铁冶金新技术国家重点实验室,北京 100083
3 长春黄金研究院有限公司,长春 130012
Preparation and Characterization of Cobalt Modified Carbon Supported Platinum Nanoparticles Catalysts
WU Guoyu1,2,ZHENG Ye3, WANG Mingyong2, XING Zhijun3
1 China National Gold Group Co., Ltd., Beijing 100011, China
2 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
3 Changchun Gold Research Institute Co.,Ltd.,Changchun 130012, China
下载:  全 文 ( PDF ) ( 8854KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 质子交换膜燃料电池阴极需要使用高活性的电催化剂来加速氧还原反应(ORR)速率,而提高活性成分贵金属铂(Pt)的功能反应利用率可解决其关键问题。本工作利用过渡金属钴Co(Ⅱ)-有机框架(Co-MOF)为前驱体合成ORR催化剂载体Co/C,并采取浸渍-液相还原法负载Pt纳米粒子制备了合金Pt-Co/C催化剂。通过对样品的孔隙结构、物相结构、微观形貌等表征,证实了载体Co/C具有较大的比表面积和相互连通的分级介孔结构,其独特的形貌、丰富的孔隙结构使负载的Pt纳米颗粒均匀分布、粒径范围窄,平均粒径约为6.8 nm。进一步对催化剂进行电化学性能评价,其电化学活性表面积(ECSA)接近于商用Pt/C催化剂的值,结果表明合金催化剂中活性成分Pt具有较高的利用率,同时还表现出载体独特的孔隙结构优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴国玉
郑晔
王明涌
邢志军
关键词:  质子交换膜燃料电池  金属有机框架  Pt-Co合金  氧还原反应    
Abstract: The cathode of proton exchange membrane fuel cells need to use highly active electrocatalyst to accelerate the oxygen reduction reaction (ORR), and the key problem can be solved by improving the functional reaction utilization rate of the active component precious metal platinum. In this work, the ORR catalyst carrier Co/C was prepared through the transition metal cobalt-organic framework (Co-MOF) as the precursor, and the alloy Pt-Co/C catalysts was prepared by impregnation-liquid phase reduction method. The pore structure, phase structure, micro-morphology and electrochemical properties of the samples were characterized and analyzed. The results show that the carrier Co/C has high specific surface area and interconnected hierarchical meso-porous structure. Its unique morphology and rich pore structure make the loaded platinum nanoparticles uniformly distributed, the particle size distribution range is narrow, and the average particle size is about 6.8 nm. Its electrochemical active surface area (ECSA) is close to the value of commercial Pt/C catalyst, which indicates that the active component platinum has high utilization rate in the alloy catalyst, meanwhile it shows the unique pore structure advantage of the carrier.
Key words:  proton exchange membrane fuel cell    metal-organic framework    Pt-Co alloy    oxygen reduction reaction
                    发布日期:  2021-12-09
ZTFLH:  TB321  
通讯作者:  wuguoyuspring@163.com   
作者简介:  吴国玉,中国黄金集团有限公司,博士后。2019年获中南大学博士学位。主要从事稀贵金属湿法冶金、冶金过程数值模拟与优化以及冶金材料的制备与性能应用等方面的研究工作。发表学术论文和发明专利共10余篇。
引用本文:    
吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
WU Guoyu,ZHENG Ye, WANG Mingyong, XING Zhijun. Preparation and Characterization of Cobalt Modified Carbon Supported Platinum Nanoparticles Catalysts. Materials Reports, 2021, 35(z2): 306-310.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/306
1 Zhang G Q, Xia B Y, Wang X, et al. Advanced Materials, 2014, 26(15), 2408.
2 Zhu C Z, Fu S F, Shi Q R, et al. Angewandte Chemie International Edition,2017,56(45), 13944.
3 Wu G Y, Zheng Y, Wang M Y, et al. Materials Reports,2021,35,420.
4 Zhao Z L, Zhang L Y, Bao S J, et al. Applied Catalysis B: Environmental, 2015,174,361.
5 吕洋,宋玉江,刘会园,等.物理化学学报, 2017,33(2),283.
6 Fan X, Luo S, Zhao X, et al.Nano Research, 2019,12(7),1721.
7 Jiang X, Liu Y, Wang J, et al. Nano Research, 2019,12(2),323.
8 Du X X, Wang X X, Yang H E et al. Materials Review, 2016,30(20),1.
9 Zeng M, Wang J N. Materials Review, 2016,30(2),213.
10 Zhang P, Gong Y P, Pan M, et al. Chinese Journal of Power Sources,2004,28(5),291.
11 Wu J B, Zhang J L, Peng Z M, et al. Journal of the American Chemistry Society,2010,132 (14),4984
12 Schenk Alexander, Grimmer Christoph, Markus Perchthaler, et al. Journal of Power Sources, 2014,266,313.
13 Yu S P, Lou Q, Liu R T, et al. Acta Chimica Sinica,2012,70(22),2359.
14 Liu L F, Pippel K. Angewandte Chemie International Edition,2011,50 (12),2729.
15 Vidal-lglesias F J,Solla-Gullón J,Herrero E,et al. Angewandte Chemie, 2010,122(39),7152.
16 Liu Z F, Jackson G S, Eichhorn B W. Angewandte Chemie, 2010,49 (18),3241.
17 Che G,Lakshmi B B,Fisher E R,et al.Nature,1998,393,346.
18 Bessel C A,Laubernds K,Rodiguez N M,et al. The Journal of Physical Chemistry B,2001, 105(6),1115.
19 Feng H B, Liu Y, Li J H. Chemical Communications,2015,51(12),2418.
20 Huang Z D, Liu J H, Xiao Z Y, et al. Nanoscale,2018,10, 22758.
21 Chen J H, Zhu J J, Lai Q X, et al. Small, 2017,13,1700740.
22 Abdelkader-Fernández V K, Fernandes D M, Balula S S,et al. ACS Applied Energy Materials, 2019,2(3),1854.
23 Gu J H, Fan H W, Li C X, et al. Angewandte Chemie International Edition, 2019, 58, 5297.
24 Wu G Y, Liu G H, Li X B, et al. RSC Advances,2019,9,5628.
25 Jiang H, Gu J, Zheng X, et al. Energy Environmental Science, 2019,12,322.
26 Albrecht M, Maier A, Treubel F et al. Europhysics Letters,2001,56(6),884.
27 Lei W J, Li M G, He L, et al. Nano Research, 2020, 13(3),638-645.
28 Liu G H, Wu G Y, Chen W,et al. Hydrometallurgy,2018,176,253.
29 Wang S, Zhang L, Qin Y, et al. Journal of Power Sources,2017,363(sep.30),260.
30 Wang S, Qin J, Meng T, et al. Nano Energy,2017,39,626.
31 Xue D, Li C, Wei P, et al. ChemElectroChem,2019,7,421.
32 Huang J J, Ding C, Yang Y Q, et al. Chinese Journal of Catalysis,2019,40(12),1895.
33 Shi Y C, Feng J J, Lin X X, et al. Electrochimica Acta,2019,293,504.
34 Wang S Y,Fan Y,Jiang S P, et al. Electrochemistry Communication,2010,12(11),1646.
[1] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[2] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[3] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[4] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[5] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[6] 附青山, 张磊, 张伟, IsmailPirMuhammad, 陈雪丹, 龚敏, 何平, 王祖波. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11099-11109.
[7] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[8] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[9] 赵僧群, 李旭蕊, 韩莎莎, 李丽. 三种金属有机框架对苯达莫司汀的载药研究[J]. 材料导报, 2020, 34(Z1): 523-526.
[10] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[11] 蔡广, 李琳, 汪荣, 陈艳秋, 陈茂龙, 程云辉, 丁利, 许宙. 磁性介孔碳的粒径可控制备及弛豫性能[J]. 材料导报, 2020, 34(22): 22020-22023.
[12] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[13] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[14] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[15] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed