Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 501-506    
  高分子与聚合物基复合材料 |
相变储能材料研究进展
吴丽梅1, 刘庆欣1, 王晓龙2, 唐宁1, 高丽丽1, 胡玲3
1 沈阳建筑大学材料科学与工程学院,沈阳 110168
2 沈阳建筑大学采购与招标处,沈阳 110168
3 沈阳建筑大学计划财务处,沈阳 110168
Review on Phase Change Energy Storage Materials
WU Limei1, LIU Qingxin1, WANG Xiaolong2, TANG Ning1, GAO Lili1, HU Ling3
1 School of Materials Science and Engineering,Shenyang Jianzhu University, Shenyang 110168, China
2 Procurement and Bidding Office, Shenyang Jianzhu University, Shenyang 110168, China
3 Planning and Finance Division, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 3108KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当今社会高速发展,化石燃料资源枯竭带来的能源供需缺口不断增大,亟需开发具有可再生能力的清洁能源。相变储能材料是解决热能供需矛盾、缓解能源危机最合适的材料之一。本文回顾了相变储能材料的分类方法,介绍了代表性相变储能材料的熔点及储热性能。同时分析讨论了通过封装及复合载体材料提升相变储能材料储热性能和稳定性的一些策略。此外,介绍了相变储能材料在食品工业、路面系统、空调系统及建筑领域的应用现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴丽梅
刘庆欣
王晓龙
唐宁
高丽丽
胡玲
关键词:  相变材料  热能存储  封装  载体材料    
Abstract: With the rapid development of society and the gradual depletion of fossil fuels, the gap between energy supply and demand continues to increase. Therefore, the development and research of clean energy with renewable capabilities is increasingly necessary. Phase change energy storage materials are one of the most suitable materials to solve the contradiction between thermal energy supply and demand and alleviate the energy crisis. This review reviews the classification methods of phase change energy storage materials, and introduces the melting points and thermal storage properties of representative phase change energy storage materials. At the same time, some strategies to improve the thermal storage performance and stability of phase change energy storage materials through packaging and composite carrier materials are analyzed and discussed. In addition, the application status of phase-change energy storage materials in the fields of food industry, pavement systems, air-conditioning systems and construction are introduced.
Key words:  phase change materials    thermal energy storage    encapsulation    carrier materials
                    发布日期:  2021-07-16
ZTFLH:  TK02  
基金资助: 中国博士后科学基金特别资助项目(2019T120218);辽宁省自然科学基金面上项目(2020-MS-202);自然资源部深部地质钻探技术重点实验室开放基金(KF201908)
通讯作者:  lmwu@sjzu.edu.cn   
作者简介:  吴丽梅,沈阳建筑大学材料科学与工程学院副教授。2016年毕业于中国地质大学(北京),获得工学博士学位。博士期间主要从事矿物功能材料的制备和应用研究。近年来,在矿物功能材料领域发表论文40余篇,目前主要从事环境材料相关研究。
引用本文:    
吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
WU Limei, LIU Qingxin, WANG Xiaolong, TANG Ning, GAO Lili, HU Ling. Review on Phase Change Energy Storage Materials. Materials Reports, 2021, 35(Z1): 501-506.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/501
1 Chandra D, Chellappa R, Chien W M. Journal of Physics and Chemistry of Solids, 2005, 66, 235.
2 Du X S, Wang H B, Wu Y, et al. Journal of Applied Polymer Science, 2017, 134, 1.
3 Kong W B, Fu X W, Liu Z M, et al. Applied Thermal Engineering, 2017, 117, 622.
4 Risueño E, Faik A, Gil A, et al. Journal of Alloys and Compounds, 2017, 705, 714.
5 Ge Z W, Ye F, Cao H, et al. Particuology, 2014, 15, 77.
6 Sarı A, Alkan C, Biçer A, et al. International Journal of Energy Research, 2014, 38, 1478.
7 Li X Y, Sanjayan Y G, Wilson J L. Energy Buildings, 2014, 76, 284.
8 Qian T T, Li J H, Min X, et al. Energy Conversion and Management, 2015, 98, 34.
9 Yuan Y P, Zhang N, Tao W Q, et al. Renewable and Sustainable Energy Reviews, 2014, 29, 482.
10 Sarı A. Energy Conversion and Management, 2003, 44, 2277.
11 Sharma A, Tyagi V, Chen C, et al. Renewable and Sustainable Energy Reviews, 2009, 13(2), 318.
12 Cabeza L, Castell A, Barreneche C, et al. Renewable and Sustainable Energy Reviews, 2011, 15(3), 1675.
13 Zhang N, Yuan Y P, Yuan Y G, et al. Energy and Buildings, 2014, 82, 505.
14 Jiao C M, Ji B H, Fang D. Materials Letters, 2012, 67, 352.
15 Hoshi A, Mills D R, Bittar A, et al. Solar Energy, 2005, 79 (3), 332.
16 Lorsch H G, Kauffman K W, Denton J C. Energy Conversion,1975, 15, 1.
17 Abhat A.Solar Energy,1983, 30(4), 313.
18 Rathod M K, Banerjee J.Renewable & Sustainable Energy Reviews, 2013, 18, 246.
19 Mei D, Zhang B, Liu R, et al. Solar Energy Materials and Solar Cells, 2011, 95, 2772.
20 Sarı A, Sarı H, Önal A.Energy Conversion and Management, 2004, 45(3), 365.
21 Sarı A, Kaygusuz K.Renewable Energy, 2001, 24(2), 303.
22 Sarı A.Applied Thermal Engineering, 2005, 25(14), 2100.
23 Wu L M, Liu Q X, Wang X L, et al. Applied Clay Science, 2020, 191, 105614.
24 Shi J B, Li M.Solar Energy, 2020, 205, 62.
25 Wang X L, Guo Q G, Zhong Y J, et al.Renewable Energy, 2013, 51, 241.
26 Lu X, Huang J T, Kang B H, et al.Solar Energy Materials and Solar Cells, 2019, 192, 170.
27 Patil N D. International Journal of Engineering Science and Technology, 2012, 4, 2502.
28 Li R G, Zhu J Q, Zhou W B, et al. Applied Thermal Engineering, 2016, 103, 452.
29 Wu J F, Li J, Xu X H, et al. Journal of Wuhan University of Technology-materials Science Edition, 2009, 24(4), 651.
30 Qian T T, Li J H, Min X, et al. Energy, 2016, 112, 1074.
31 Myers P D, Alam T E, Kamal R, et al. Applied Energy, 2016, 165, 225.
32 Jiang Y F, Sun Y P, Liu M, et al. Solar Energy Materials and Solar Cells, 2016, 152, 155.
33 Luo Y, Du X Z, Awad A, et al. International Journal of Heat and Mass Transfer, 2017, 104, 658.
34 Xu B, Li P, Chan C. Applied Energy, 2015,160, 286.
35 Trigui A, Karkri M, Krupa I. Energy Conversion and Management, 2014, 77, 586.
36 Liu H, Wang X, Wu D. ACS Sustainable Chemistry & Engineering, 2017, 5(6), 4906.
37 Dao T D, Jeong H M. A. Carbon, 2016, 99, 49.
38 Li H, Jiang H, Li Q, et al. Energy Conversion and Management, 2013, 75, 482.
39 Mehrali M, Latibari S T, Mehrali M,et al. Applied Energy, 2014, 135, 339.
40 Zou D Q, Ma X F, Liu X S, et al. International Journal of Heat and Mass Transfer, 2018, 120, 33.
41 Dao T D, Jeong H M. Solar Energy Materials and Solar Cells, 2015, 137, 227.
42 Jia S K, Yu D M, Zhu Y, et al. Polymers, 2017, 9(10), 528.
43 Wang X L, Li B, Qu Z G, et al. International Journal of Heat and Mass Transfer, 2020, 155, 119853.
44 Cheng J J, Zhou Y, Ma D, et al. Construction and Building Materials, 2020, 244, 118388.
45 Li C C, Xie B S, Chen D L, et al. Energy, 2019,166, 264.
46 Stoller M D, Park S J, Zhu Y W, et al. Nano Letters, 2008, 8(10), 3498.
47 Wang H L, Robinson J T, Diankov G, et al. Journal of the American Chemical Society, 2010, 132(10), 3270.
48 Li B J, Cao H Q, Shao J, et al. Journal of Materials Chemistry, 2011, 21(13), 5069.
49 Cui X, Ding P, Zhuang N, et al. ACS Applied Materials & Interfaces, 2015, 7(34), 19068.
50 Kholmanov I, Kim J, Ou E, et al. ACS Nano, 2015, 9(12), 11699.
51 Xiao Y J, Wang W Y, Lin T, et al. The Journal of Physical Chemistry C, 2016, 120(12), 6344.
52 Wang W T, Tang B T, Ju B Z, et al. Journal of Materials Chemistry A, 2017, 5, 958.
53 Zhang Y, Wang J S, Qiu J J, et al. Applied Energy, 2019, 237, 83.
54 贾亚可. 有机/海泡石纤维相变蓄热材料的研究.硕士学位论文, 河北工业大学, 2011.
55 孙丹. 石蜡/膨胀珍珠岩复合相变材料制备及性能研究.硕士学位论文, 大连理工大学, 2010.
56 Memon S A, Liao W Y, Yang S Q, et al. Materials, 2015, 8, 499.
57 Sarı A, Biçer A.Solar Energy Materials and Solar Cells, 2012, 101, 114.
58 Sarı A, Biçer A.Energy and Buildings, 2012, 51, 73.
59 Deng J H, Li W B, Jiang D H. Advanced Mateials Research, 2011, 374-377, 807.
60 Li C C, Fu L J, Ouyang J, et al. Scientific Reports, 2013, 3(1), 1908.
61 Sun D, Wang L J. Construction and Building Materials, 2015, 101, 791.
62 Shin D, Banerjee D.International Journal of Heat and Mass Transfer, 2015, 84, 898.
63 Song S K, Dong L J, Chen S, et al. Energy Conversion and Management, 2014, 81, 306.
64 杨颖,董昭,童明伟,张伟,王晗. 化工新型材料,2014,42(5),95.
65 Deng Y, Li J H, Nian H E. Solar Energy Materials & Solar Cells, 2018, 174, 283.
66 管学茂, 宋仟仟, 张建武, 朱建平.太阳能学报, 2015, 36(4),950.
67 Li C C, Fu L J, Ouyang J, et al. Applied Clay Science, 2015, 115, 212.
68 李忠, 于少明, 杭国培, 伍广.化学世界, 2006, 46(11), 641.
69 Peng K, Fu L J, Li X Y, et al. Applied Clay Science, 2017, 138, 100.
70 Yi H, Zhan W Q, Zhao Y L, et al. Solar Energy Materials & Solar Cells, 2019, 192, 57.
71 Yi H, Ai Z, Zhao Y L, et al.Solar Energy Materials and Solar Energy, 2020, 204, 110233.
72 Liu C, Rao Z, Zhao J,et al. Nano Energy, 2015, 13, 814.
73 Hyun D C, Levinson N S, Jeong U, et al. Angewandte Chemie International Edition, 2014, 53(15), 3780.
74 Rathod M K, Banerjee J. Renewable and Sustainable Energy Reviews, 2013, 18, 246.
75 Fallahi A, Guldentops G, Tao M,et al. Applied Thermal Engineering, 2017, 127, 1427.
76 Ma Y H, Xie Q F, Wang X Z, et al. Solar Energy, 2019, 179, 410.
77 Sarı A, Alkan C, Dögüşcü D K, et al. Solar Energy, 2015, 115, 195.
78 Jin Z, Wang Y, Liu J, et al. Polymers, 2008, 49 (12), 2903.
79 Praveen B, Suresh S, Pethurajan V. Applied Thermal Engineering, 2019, 156, 237.
80 Lu W, Tassou S. Applied Energy, 2013, 112, 1376.
81 Oro E, Miro L, Farid M, et al. International Journal of Refrigeration, 2012, 35, 1709.
82 Oró E, De Gracia A, Cabeza L F. International Journal of Refrigeration, 2013, 36, 102.
83 Pérez-Masiá R, López-Rubio A, Lagarón J M. Food Hydrocolloids, 2013, 30, 182.
84 Chalco-Sandoval W, Fabra M J, López-Rubio A, et al. Journal of Food Engineering, 2017, 192, 122.
85 Chalco-Sandoval W, Fabra M J, López-Rubio A, et al. European Polymer Journal, 2015, 72, 23.
86 Günther E, Schmid T, Mehling H,et al. International Journal of Refrigeration, 2010, 33, 1605.
87 Ma B, Li J, Wang X M, et al. Advances in Materials Research, 2011, 311-313, 2151.
88 Ryms M, Lewandowski M W, Radziemska E K, et al. Construction and Building Materials, 2015, 81, 313.
89 Arora A, Sant G, Neithalath N. Cement and Concrete Composite, 2017, 81, 11.
90 YoungB A, Falzone G, She Z Y, et al. Construction and Building Mate-rials, 2017, 147, 466.
91 She Z Y, Wei Z H, Young B A, et al, Cement and Concrete Composite, 2019, 103, 149.
92 车文斌. 基于能耗模拟的中央空调智能控制节能系统的研究与应用. 硕士学位论文. 重庆邮电大学, 2018.
93 Nie B J, Du Z, Zou B Y, et al. Energy and Buildings, 2020, 214, 109895.
94 Said M A, Hassan H. Applied Energy, 2018, 230, 1380.
95 Zhi X Q, Wang X L, Wang T, et al.Renewable and Sustainable Energy Reviews, 2013, 22, 108.
96 沈世平. 某中央空调系统节能改造及能耗分析. 硕士学位论文. 重庆大学, 2011.
97 Khudhairi A, Farid M. Energy Conversation and Management, 2004, 45, 263.
98 Li D, Wu YY, Liu C Y, et al. Energy Conversation and Management, 2018, 172, 119.
99 Sharma A, Tyagi V V, Chen C R, et al. Renewable and Sustainable Energy Reviews, 2009, 13(2), 318.
100 Kheradmand M,Castro-Gomes J, Azenha M, et al. Construction and Building Materials, 2015, 89, 48.
101 Nagano K, Takeda S, Mochida T, et al. Energy and Buildings, 2006, 38, 436.
102 Lin K P, Zhang Y P, Xu X, et al. Energy and Buildings, 2005, 37, 215.
[1] 朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
[2] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[3] 李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
[4] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[5] 王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066.
[6] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[7] 潘华, 李文婧, 吴立涛, 张芳. 新型纳米农药制剂载体材料的研究进展[J]. 材料导报, 2020, 34(Z2): 99-103.
[8] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[9] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[10] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[11] 王涛, 李金辉, 赵雅绪, 朱良, 张少霞, 张国平, 孙蓉, 汪正平. 光敏聚苯并噁唑的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19183-19189.
[12] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[13] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[14] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[15] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed