Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17143-17149    https://doi.org/10.11896/cldb.20050158
  材料与可持续发展(四)———材料再制造与废弃物料资源化利用* |
热障涂层应力产生机制及分布特征
王力1,2, 王海斗2, 底月兰2, 赵运才1, 董丽虹2, 李帅1,2
1 江西理工大学机电工程学院,赣州 341000
2 陆军装甲兵学院,装备再制造技术国防科技重点实验室,北京 100072
Stress Generation Mechanism and Distribution Characteristics in Thermal Barrier Coatings
WANG Li1,2, WANG Haidou2, DI Yuelan2, ZHAO Yuncai1, DONG Lihong2, LI Shuai1,2
1 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 Key Laboratory of National Defense Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
下载:  全 文 ( PDF ) ( 3166KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层因优异的耐高温、耐磨损和耐腐蚀性等优点,被广泛应用在航空发动机等热端部件表面。热障涂层作为零件表面的服役载体,在外界热腐蚀、热梯度应力和机械载荷应力的作用下,易出现表面开裂及界面涂层剥落,这是限制热障涂层长时间使用的瓶颈问题。热障涂层由基体、粘接层、陶瓷层构成,涂层材料特性不同,界面处应力应变分布也不同,在外界载荷条件下,涂层与基体如何实现协同变形,应力如何传递等问题目前尚无明确解释。因此本文主要针对外加载荷作用下,热障涂层内部的应力传递及界面的应力分布问题进行研究。总结当前热障涂层的弹塑性应力模型和损伤应力模型,获得涂层界面应力分布规律,即弹塑性变形阶段,涂层界面应力于一端发生应力集中,并且基体与粘接层界面应力大约是陶瓷层与粘接层界面应力的四倍。随着载荷的增加,涂层表面损伤加剧,其剪滞模型的界面正应力更加符合四分之一椭圆函数,界面剪切应力呈反对称分布,应力分布特征为研究热障涂层在外载条件作用下对裂纹损伤演化行为的影响提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王力
王海斗
底月兰
赵运才
董丽虹
李帅
关键词:  热障涂层  残余应力  界面应力  分布特征  产生机制    
Abstract: Thermal barrier coatings (TBCs) are widely used on the surface of aero-engine and other hot-end components due to its excellent high temperature resistance, wear resistance and corrosion resistance. As the service carrier of parts surface, thermal barrier coating is prone to surface cracking and interfacial peeling under the action of external thermal corrosion, thermal gradient stress and mechanical load stress, which is the key problem to limit the long-term use of thermal barrier coating. TBCs are made up of substrate, bonding coating and ceramic coating. Due to the different material properties of the substrate and coating, the distribution of interface stress-strain are different. TBCs still have some unresolved problems, for instance, how to realize coordinated deformation and understand the process of stress transfer of coating and substrate under loading. Therefore, the main purpose of this working is to study the stress transfer and distribution inside the TBCs. From the summary of the elastic-plastic stress model and damage stress model of TBCs, the stress distribution laws of coating interface are obtained. In the elastic-plastic stage, interface stress of TBCs is concentrated in one end, and the interface stress between substrate and bonding layer is about four times that of ceramic and bonding layer. With the increasing of load, the coating damage increases sharply. Interface normal stress of shear-lag model is more accorded with the quarter elliptic function, and interface shear stress takes an antisymmetric distribution. Stress distribution laws of TBCs provides theoretical basis for research on crack growth behavior under the function of load.
Key words:  thermal barrier coatings    residual stress    interface stress    distribution characteristics    generation mechanism
                    发布日期:  2021-09-26
ZTFLH:  TQ174  
基金资助: 国家自然科学基金项目(51775553;51535011)
通讯作者:  dylxinjic031@163.com; zhaoyuncai@126.com   
作者简介:  王力,1994年生,男,硕士,研究方向为表面工程与再制造工程。
底月兰,1986 年生,博士,助理研究员,研究方向为表面工程与再制造工程。
赵运才,1964年生,男,博士,教授,主要研究再制造工程、装备摩擦学和表面工程。
引用本文:    
王力, 王海斗, 底月兰, 赵运才, 董丽虹, 李帅. 热障涂层应力产生机制及分布特征[J]. 材料导报, 2021, 35(17): 17143-17149.
WANG Li, WANG Haidou, DI Yuelan, ZHAO Yuncai, DONG Lihong, LI Shuai. Stress Generation Mechanism and Distribution Characteristics in Thermal Barrier Coatings. Materials Reports, 2021, 35(17): 17143-17149.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050158  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17143
1 Li X H, Di Y L, Wang H D, et al. Materials Reports, 2019, 33 (9), 76(in Chinese).
李雪换, 底月兰, 王海斗,等. 材料导报, 2019, 33(9),76.
2 Zhang T Y, Wu C, Xiong Z, et al. Progress in Laser and Optoelectronics, 2014, 51(3), 27(in Chinese).
张天佑, 吴超, 熊征,等. 激光与光电子学进展, 2014, 51(3),27.
3 Padture N P, Gell M, Jordan E H. Science, 2002, 296(5566), 280.
4 Thompson J A, Clyne T W. Acta Materialia, 2001, 49(9), 1565.
5 Li X H, Di Y L, Wang H D, et al. Materials Review, 2018, 32(19),3368(in Chinese).
李雪换, 底月兰, 王海斗, 等. 材料导报, 2018, 32(19),3368.
6 Nairn J A. Engineering Fracture Mechanics, 2018, 203, 197.
7 Chen W R, Wu X, Marple B R, et al. Surface and Coatings Technology, 2008, 202(12), 2677.
8 Cipitria A, Golosnoy I O, Clyne T W. Acta Materialia,2009,57(4),980.
9 Leoni M, Jones R L, Scardi P. Surface and Coatings Technology, 1998,108, 107.
10 Nychka J A, Clarke D R. Surface and Coatings Technology, 2001, 146, 110.
11 Scardi P, Leoni M, Bertamini L. Thin Solid Films,1996,278(1-2),96.
12 Tsipas S A, Golosnoy I O. Journal of the European Ceramic Society, 2011, 31(15), 2923.
13 Shen Z, He L, Xu Z, et al. Surface and Coatings Technology, 2019, 357, 427.
14 Fan Q B, Feng Z, Wang F C, et al. Computational Materials Science, 2009, 46(3), 716.
15 Lehmann H, Pitzer D, Pracht G, et al. Journal of the American Ceramic Society, 2003, 86.
16 He B, Li Y, Zhang H Y, et al. Rare Metals, 2018, 37(1), 66.
17 Liu J M, Chen M Y, Ren X J, et al. Thermal Spray Technology, 2010, 2(4), 30(in Chinese).
刘建明, 陈美英, 任先京,等.热喷涂技术, 2010, 2(4), 30.
18 Bison P, Cernuschi F, Capelli S. Surface and Coatings Technology, 2011, 205(10), 3128.
19 Gupta M, Skogsberg K, Nyle P, et al. Journal of Thermal Spray Technolo-gy, 2014, 23, 170.
20 Liang M D, Yu J P, Zhang X, et al. Thermal Spray Technology, 2013 (02), 6(in Chinese).
梁明德, 于继平, 张鑫,等. 热喷涂技术, 2013(02), 6.
21 Karaoglanli A C, Altuncu E, Ozdemir I, et al. Surface and Coatings Technology, 2011, 205, 369.
22 Czech N, Fietzek H, Juez-Lorenzo M, et al. Surface and Coatings Technology, 1999, 113(1-2), 157.
23 Hu C S, Wang F H, Wu W. Corrosion Science and Protetion Technology, 2000, 12(3), 160(in Chinese).
胡传顺, 王福会, 吴维. 腐蚀科学与防护技术, 2000, 12(3), 160.
24 Wang L, Wang H, Di Y, et al. International Journal of Applied Ceramic Technology, 2020, 17(5), 2156.
25 Kashtalyan M, García I G, Manticˇ V. International Journal of Solids and Structures, 2018, 139, 189.
26 Qu Z, Wei K, He Q, et al. Ceramics International, 2018, 44(7), 7926.
27 Mao W G, Wan J, Dai C Y, et al. Surface and Coatings Technology, 2012, 206(21), 4455.
28 Jiang J, Wang W, Zhao X, et al. Engineering Fracture Mechanics, 2018, 196, 191.
29 Li B, Fan X, Wang T, et al. Engineering Fracture Mechanics, 2018, 201, 13.
30 Ang A S M, Berndt C C. International Materials Reviews, 2014, 59(4), 179.
31 Fochesatto N S, Buezas F S, Rosales M B, et al. Journal of Tribology, 2017, 139(6).
32 Zhang X C. Fundamental research on structural integrity and life prediction of plasma sprayed coatings for remanufacturing. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2007(in Chinese).
张显程. 面向再制造的等离子喷涂层结构完整性及寿命预测基础研究. 博士学位论文,上海交通大学, 2007.
33 Zhu J, Xie H, Hu Z, et al. Surface and Coatings Technology, 2011, 206(6), 1396.
34 Xu J S, Zhang X C, Xuan F Z, et al. Materials Science and Engineering: A, 2013, 560, 744.
35 Kuroda S, Clyne T W. Thin Solid Films, 1991, 200(1), 49.
36 Ma W, Gong S, Xu H, et al. Scripta Materialia, 2006, 54(8), 1505.
37 Shen Z, He L, Xu Z, et al. Surface and Coatings Technology, 2019, 357, 427.
38 Mao W, Zhang H, Zhang Z, et al. Surface and Coatings Technology, 2020, 125723.
39 Jiang Y, Xu B S, Wang H D, et al. Computational Materials Science, 2010, 49(3), 603.
40 Khor K A, Gu Y W. Materials Science and Engineering: A, 2000, 277(1-2), 64.
41 Mao W G, Zhou Y C, Yang L, et al. Mechanics of Materials, 2006, 38(12), 1118.
42 Gu L, Fan X, Zhao Y, et al. Surface and Coatings Technology, 2012, 206(21), 4403.
43 Jiang Y, Xu B S, Wang H D. Heat Treatment of Metals, 2007, 32(1), 25(in Chinese).
姜祎, 徐滨士, 王海斗. 金属热处理, 2007, 32(1), 25.
44 Wang H, Zhang K. Heat Treatment of Metals, 2001, 26(9), 44(in Chinese).
王洪, 张坤.金属热处理, 2001, 26(9), 44.
45 Yao G F, Ma H M, Wang X Y, et al. Heat Treatment of Metals, 2005, 30(10),43(in Chinese).
姚国凤, 马红梅, 王晓英,等.金属热处理, 2005,30(10),43.
46 Hou P J, Wang H G, Zha B L, et al. Thermal Processing Technology, 2007, 36(7), 82(in Chinese).
侯平均, 王汉功, 查柏林, 等. 热加工工艺, 2007, 36(7), 82.
47 Wang Z P, Han Z Y, Chen Y J, et al. Journal of the China Welding Institution, 2011, 32 (1), 21(in Chinese).
王志平, 韩志勇, 陈亚军, 等. 焊接学报, 2011, 32(1), 21.
48 Han Z Y, Wang Z P, Chen Y J. Journal of the China Welding Institution,2011,32(10),21(in Chinese).
韩志勇, 王志平, 陈亚军. 焊接学报, 2011, 32(10), 21.
49 Yu Q M, Cen L, Wang Y. Ceramics International, 2018, 44(5), 5116.
50 Chen Z, Huang H, Zhao K, et al. Ceramics International, 2018, 44(14), 16937.
51 Han Z Y, Zhang H, Wang Z P. 2012,33(12),33(in Chinese).
韩志勇, 张华, 王志平.2012,33(12),33.
52 Mao W G, Jiang J P, Zhou Y C, et al. Surface and Coatings Technology, 2011, 205(8-9), 3093.
53 Chakrabarti B K, Benguigui L G. Statisfical physics of fracture and brack-dwon is disordered stystems,Clarendon Press, Oxford, 1997.
54 Balokhonov R R, Romanova V A, Schmauder S, et al. Composites Part B: Engineering, 2014, 66, 276.
55 Balokhonov R R, Romanova V A, Schmauder S, et al. Theoretical and Applied Fracture Mechanics, 2019, 101, 342.
56 Da Costa M V T, Bolinsson J, Neagu R C, et al. Surface and Coatings Technology, 2019, 370, 374.
57 Hui D, Dutta P K. Composites Part B: Engineering,2011,42(8),2181.
58 Yuan H, Lu X, Hui D, et al. Composite Structures,2012,94(12),3781.
59 Wu C W, Chen G N, Zhang K, et al. Chinese Journal of Solid Mechanics, 2006, 27(2), 203(in Chinese).
吴臣武, 陈光南, 张坤, 等. 固体力学学报, 2006, 27(2), 203.
60 Xi J. Research on deformation and failure of thermal barrier coating materials under the combined action of heat and force. Ph. D. Thesis, Institute of Mechanics, Chinese Academy of Sciences, China, 2003(in Chinese).
席军. 热障涂层材料在热-力联合作用下的变形和破坏研究. 博士学位论文,中国科学院力学研究所,2003.
61 Mao W G, Chen Y Y, Wang Y J, et al. Surface and Coatings Technology, 2018, 350, 211.
62 Zhang H, Yang J, Hu J, et al. Construction and Building Materials, 2018, 161, 112.
63 Ramachandramoorthy R, Schwiedrzik J, Petho L, et al. Nano letters, 2019, 19(4), 2350.
64 Cox H L. British journal of applied physics, 1952, 3(3), 72.
65 Yang B Q, Chen G N, Zhang K, et al. Journal of Mechanical Enginee-ring, 2008, 44(5), 57(in Chinese).
杨班权, 陈光南, 张坤, 等. 机械工程学报, 2008, 44(5), 57.
66 Andersons J, Handge U A, Sokolov I M, et al. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 17(2), 261.
67 Dolgov N A. Strength of Materials, 2016, 48(5), 658.
68 Curtin W A. Journal of Materials Science, 1991, 26(19), 5239.
69 Chen B F, Hwang J, Chen I F, et al. Surface and Coatings Technology, 2000, 126(2-3), 91.
70 Ghafouri-Azar R, Mostaghimi J, Chandra S. Computation Materials Science, 2006, 35(1), 13.
71 Wu D J, Mao W G, Zhou Y C, et al. Applied Surface Science, 2011, 257(14), 6040.
[1] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[2] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[3] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[4] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[5] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[6] 王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
[7] 刘明霞, 王冬, 张文康, 畅庚榕, 刘道新, 徐可为. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(22): 22124-22129.
[8] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[9] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[10] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[11] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[12] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[13] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[14] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[15] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed