Stress Generation Mechanism and Distribution Characteristics in Thermal Barrier Coatings
WANG Li1,2, WANG Haidou2, DI Yuelan2, ZHAO Yuncai1, DONG Lihong2, LI Shuai1,2
1 College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 2 Key Laboratory of National Defense Technology for Equipment Remanufacturing Technology, Army Armored Forces Academy, Beijing 100072, China
Abstract: Thermal barrier coatings (TBCs) are widely used on the surface of aero-engine and other hot-end components due to its excellent high temperature resistance, wear resistance and corrosion resistance. As the service carrier of parts surface, thermal barrier coating is prone to surface cracking and interfacial peeling under the action of external thermal corrosion, thermal gradient stress and mechanical load stress, which is the key problem to limit the long-term use of thermal barrier coating. TBCs are made up of substrate, bonding coating and ceramic coating. Due to the different material properties of the substrate and coating, the distribution of interface stress-strain are different. TBCs still have some unresolved problems, for instance, how to realize coordinated deformation and understand the process of stress transfer of coating and substrate under loading. Therefore, the main purpose of this working is to study the stress transfer and distribution inside the TBCs. From the summary of the elastic-plastic stress model and damage stress model of TBCs, the stress distribution laws of coating interface are obtained. In the elastic-plastic stage, interface stress of TBCs is concentrated in one end, and the interface stress between substrate and bonding layer is about four times that of ceramic and bonding layer. With the increasing of load, the coating damage increases sharply. Interface normal stress of shear-lag model is more accorded with the quarter elliptic function, and interface shear stress takes an antisymmetric distribution. Stress distribution laws of TBCs provides theoretical basis for research on crack growth behavior under the function of load.
1 Li X H, Di Y L, Wang H D, et al. Materials Reports, 2019, 33 (9), 76(in Chinese). 李雪换, 底月兰, 王海斗,等. 材料导报, 2019, 33(9),76. 2 Zhang T Y, Wu C, Xiong Z, et al. Progress in Laser and Optoelectronics, 2014, 51(3), 27(in Chinese). 张天佑, 吴超, 熊征,等. 激光与光电子学进展, 2014, 51(3),27. 3 Padture N P, Gell M, Jordan E H. Science, 2002, 296(5566), 280. 4 Thompson J A, Clyne T W. Acta Materialia, 2001, 49(9), 1565. 5 Li X H, Di Y L, Wang H D, et al. Materials Review, 2018, 32(19),3368(in Chinese). 李雪换, 底月兰, 王海斗, 等. 材料导报, 2018, 32(19),3368. 6 Nairn J A. Engineering Fracture Mechanics, 2018, 203, 197. 7 Chen W R, Wu X, Marple B R, et al. Surface and Coatings Technology, 2008, 202(12), 2677. 8 Cipitria A, Golosnoy I O, Clyne T W. Acta Materialia,2009,57(4),980. 9 Leoni M, Jones R L, Scardi P. Surface and Coatings Technology, 1998,108, 107. 10 Nychka J A, Clarke D R. Surface and Coatings Technology, 2001, 146, 110. 11 Scardi P, Leoni M, Bertamini L. Thin Solid Films,1996,278(1-2),96. 12 Tsipas S A, Golosnoy I O. Journal of the European Ceramic Society, 2011, 31(15), 2923. 13 Shen Z, He L, Xu Z, et al. Surface and Coatings Technology, 2019, 357, 427. 14 Fan Q B, Feng Z, Wang F C, et al. Computational Materials Science, 2009, 46(3), 716. 15 Lehmann H, Pitzer D, Pracht G, et al. Journal of the American Ceramic Society, 2003, 86. 16 He B, Li Y, Zhang H Y, et al. Rare Metals, 2018, 37(1), 66. 17 Liu J M, Chen M Y, Ren X J, et al. Thermal Spray Technology, 2010, 2(4), 30(in Chinese). 刘建明, 陈美英, 任先京,等.热喷涂技术, 2010, 2(4), 30. 18 Bison P, Cernuschi F, Capelli S. Surface and Coatings Technology, 2011, 205(10), 3128. 19 Gupta M, Skogsberg K, Nyle P, et al. Journal of Thermal Spray Technolo-gy, 2014, 23, 170. 20 Liang M D, Yu J P, Zhang X, et al. Thermal Spray Technology, 2013 (02), 6(in Chinese). 梁明德, 于继平, 张鑫,等. 热喷涂技术, 2013(02), 6. 21 Karaoglanli A C, Altuncu E, Ozdemir I, et al. Surface and Coatings Technology, 2011, 205, 369. 22 Czech N, Fietzek H, Juez-Lorenzo M, et al. Surface and Coatings Technology, 1999, 113(1-2), 157. 23 Hu C S, Wang F H, Wu W. Corrosion Science and Protetion Technology, 2000, 12(3), 160(in Chinese). 胡传顺, 王福会, 吴维. 腐蚀科学与防护技术, 2000, 12(3), 160. 24 Wang L, Wang H, Di Y, et al. International Journal of Applied Ceramic Technology, 2020, 17(5), 2156. 25 Kashtalyan M, García I G, Manticˇ V. International Journal of Solids and Structures, 2018, 139, 189. 26 Qu Z, Wei K, He Q, et al. Ceramics International, 2018, 44(7), 7926. 27 Mao W G, Wan J, Dai C Y, et al. Surface and Coatings Technology, 2012, 206(21), 4455. 28 Jiang J, Wang W, Zhao X, et al. Engineering Fracture Mechanics, 2018, 196, 191. 29 Li B, Fan X, Wang T, et al. Engineering Fracture Mechanics, 2018, 201, 13. 30 Ang A S M, Berndt C C. International Materials Reviews, 2014, 59(4), 179. 31 Fochesatto N S, Buezas F S, Rosales M B, et al. Journal of Tribology, 2017, 139(6). 32 Zhang X C. Fundamental research on structural integrity and life prediction of plasma sprayed coatings for remanufacturing. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2007(in Chinese). 张显程. 面向再制造的等离子喷涂层结构完整性及寿命预测基础研究. 博士学位论文,上海交通大学, 2007. 33 Zhu J, Xie H, Hu Z, et al. Surface and Coatings Technology, 2011, 206(6), 1396. 34 Xu J S, Zhang X C, Xuan F Z, et al. Materials Science and Engineering: A, 2013, 560, 744. 35 Kuroda S, Clyne T W. Thin Solid Films, 1991, 200(1), 49. 36 Ma W, Gong S, Xu H, et al. Scripta Materialia, 2006, 54(8), 1505. 37 Shen Z, He L, Xu Z, et al. Surface and Coatings Technology, 2019, 357, 427. 38 Mao W, Zhang H, Zhang Z, et al. Surface and Coatings Technology, 2020, 125723. 39 Jiang Y, Xu B S, Wang H D, et al. Computational Materials Science, 2010, 49(3), 603. 40 Khor K A, Gu Y W. Materials Science and Engineering: A, 2000, 277(1-2), 64. 41 Mao W G, Zhou Y C, Yang L, et al. Mechanics of Materials, 2006, 38(12), 1118. 42 Gu L, Fan X, Zhao Y, et al. Surface and Coatings Technology, 2012, 206(21), 4403. 43 Jiang Y, Xu B S, Wang H D. Heat Treatment of Metals, 2007, 32(1), 25(in Chinese). 姜祎, 徐滨士, 王海斗. 金属热处理, 2007, 32(1), 25. 44 Wang H, Zhang K. Heat Treatment of Metals, 2001, 26(9), 44(in Chinese). 王洪, 张坤.金属热处理, 2001, 26(9), 44. 45 Yao G F, Ma H M, Wang X Y, et al. Heat Treatment of Metals, 2005, 30(10),43(in Chinese). 姚国凤, 马红梅, 王晓英,等.金属热处理, 2005,30(10),43. 46 Hou P J, Wang H G, Zha B L, et al. Thermal Processing Technology, 2007, 36(7), 82(in Chinese). 侯平均, 王汉功, 查柏林, 等. 热加工工艺, 2007, 36(7), 82. 47 Wang Z P, Han Z Y, Chen Y J, et al. Journal of the China Welding Institution, 2011, 32 (1), 21(in Chinese). 王志平, 韩志勇, 陈亚军, 等. 焊接学报, 2011, 32(1), 21. 48 Han Z Y, Wang Z P, Chen Y J. Journal of the China Welding Institution,2011,32(10),21(in Chinese). 韩志勇, 王志平, 陈亚军. 焊接学报, 2011, 32(10), 21. 49 Yu Q M, Cen L, Wang Y. Ceramics International, 2018, 44(5), 5116. 50 Chen Z, Huang H, Zhao K, et al. Ceramics International, 2018, 44(14), 16937. 51 Han Z Y, Zhang H, Wang Z P. 2012,33(12),33(in Chinese). 韩志勇, 张华, 王志平.2012,33(12),33. 52 Mao W G, Jiang J P, Zhou Y C, et al. Surface and Coatings Technology, 2011, 205(8-9), 3093. 53 Chakrabarti B K, Benguigui L G. Statisfical physics of fracture and brack-dwon is disordered stystems,Clarendon Press, Oxford, 1997. 54 Balokhonov R R, Romanova V A, Schmauder S, et al. Composites Part B: Engineering, 2014, 66, 276. 55 Balokhonov R R, Romanova V A, Schmauder S, et al. Theoretical and Applied Fracture Mechanics, 2019, 101, 342. 56 Da Costa M V T, Bolinsson J, Neagu R C, et al. Surface and Coatings Technology, 2019, 370, 374. 57 Hui D, Dutta P K. Composites Part B: Engineering,2011,42(8),2181. 58 Yuan H, Lu X, Hui D, et al. Composite Structures,2012,94(12),3781. 59 Wu C W, Chen G N, Zhang K, et al. Chinese Journal of Solid Mechanics, 2006, 27(2), 203(in Chinese). 吴臣武, 陈光南, 张坤, 等. 固体力学学报, 2006, 27(2), 203. 60 Xi J. Research on deformation and failure of thermal barrier coating materials under the combined action of heat and force. Ph. D. Thesis, Institute of Mechanics, Chinese Academy of Sciences, China, 2003(in Chinese). 席军. 热障涂层材料在热-力联合作用下的变形和破坏研究. 博士学位论文,中国科学院力学研究所,2003. 61 Mao W G, Chen Y Y, Wang Y J, et al. Surface and Coatings Technology, 2018, 350, 211. 62 Zhang H, Yang J, Hu J, et al. Construction and Building Materials, 2018, 161, 112. 63 Ramachandramoorthy R, Schwiedrzik J, Petho L, et al. Nano letters, 2019, 19(4), 2350. 64 Cox H L. British journal of applied physics, 1952, 3(3), 72. 65 Yang B Q, Chen G N, Zhang K, et al. Journal of Mechanical Enginee-ring, 2008, 44(5), 57(in Chinese). 杨班权, 陈光南, 张坤, 等. 机械工程学报, 2008, 44(5), 57. 66 Andersons J, Handge U A, Sokolov I M, et al. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 17(2), 261. 67 Dolgov N A. Strength of Materials, 2016, 48(5), 658. 68 Curtin W A. Journal of Materials Science, 1991, 26(19), 5239. 69 Chen B F, Hwang J, Chen I F, et al. Surface and Coatings Technology, 2000, 126(2-3), 91. 70 Ghafouri-Azar R, Mostaghimi J, Chandra S. Computation Materials Science, 2006, 35(1), 13. 71 Wu D J, Mao W G, Zhou Y C, et al. Applied Surface Science, 2011, 257(14), 6040.