Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 53-57    
  无机非金属及其复合材料 |
碳纳米材料的抗菌性及在生物医学中的应用研究进展
张超1, 张利2, 刘兴华3, 陈琳3, 杨永珍3, 于世平4
1 山西医科大学附属白求恩医院,太原 030001;
2 山西白求恩医院,太原 030032;
3 太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024;
4 山西医科大学第二附属医院,太原 030001
Research Advances in Antibacterial Properties and Applications in Biomedicine of Carbon Nanomaterials
ZHANG Chao1, ZHANG Li2, LIU Xinghua3, CHEN Lin3, YANG Yongzhen3, YU Shiping4
1 Bethune Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China;
2 Bethune Hospital of Shanxi Province, Taiyuan 030032, China;
3 Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
4 Second Hospital of Shanxi Medical University, Taiyuan 030001, China
下载:  全 文 ( PDF ) ( 3431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为临床上所使用的主要抗菌药物,抗生素为人类的一些感染疾病提供了简单有效的治疗方法。然而抗生素的过度使用以及滥用逐渐造成了超级耐药菌的出现,使得细菌感染越来越难以治疗,对人类健康造成了严重的威胁。目前由耐药菌引起的细菌感染已是全球公共卫生面临的严峻挑战,因此,发展新型具有抗菌作用且不易产生耐药性的材料/药物势在必行。
在过去的十几年中,纳米技术的迅猛发展为抗菌治疗提供了很有前景的选择。通过对纳米材料与细菌相互作用机理的研究,发现了其与传统抗生素相比不易诱导细菌耐药的特点。按照材质来源的不同,纳米抗菌材料主要分为天然系、有机系及无机系。天然系包括植物来源和动物来源,受安全和生产等因素制约,无法实现大规模生产;有机系由于其稳定性差以及抗菌效果弱,在使用上受到很大的限制;无机系目前市场上主要以银系抗菌剂为主导,除易被氧化和团聚之外,其生物安全性还尚有争议。
在此背景下,碳纳米材料因其生产原料广泛、特殊的结构特征和理化性质,相对良好的生物相容性而备受关注。本文介绍的碳纳米材料主要包括碳纳米管、石墨烯材料、碳点及其衍生物,是目前应用非常广泛的一类纳米材料。现有的研究结果表明,碳纳米材料具有较高的抗菌活性和不易产生耐药性的特点,在抗菌领域中已逐渐得到应用。
本文就目前碳纳米材料的特性及抗菌机制的研究进行综述,介绍了碳纳米材料在医用抗菌领域中的应用现状,并对其在医用导尿管中的应用前景进行了展望,以期为解决导尿管相关性尿路感染提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张超
张利
刘兴华
陈琳
杨永珍
于世平
关键词:  耐药菌  碳纳米材料  抗菌  医学应用    
Abstract: As the main antibacterial agents used in clinic, antibiotics provide a simple and effective treatment for some infectious diseases of human. However, the overuse and abuse of antibiotics gradually lead to the emergence of super resistant bacteria, which makes bacterial infection more and more difficult to treat, and poses a serious threat to human health. At present, the bacterial infection caused by drug-resistant bacteria has been a serious challenge to the global public health. Therefore, it is imperative to develop new materials/drugs that have antibacterial effect and are not easy to produce drug resistance.
Rapid advances in nanotechnology have provided promising options for antimicrobial therapy over the past decade. By studying the mechanism of interaction between nanomaterials and bacteria, it is found that nanomaterials are less likely to induce bacterial resistance than traditional anti-biotics. According to the different sources of materials, nano-antibacterial materials are mainly divided into natural, organic and inorganic systems. Natural systems include plant and animal source, which can not realize mass production because of the restriction of safety, production and other factors. Due to their poor stability and weak antibacterial effect, organic systems are greatly restricted in use. At present, the inorganic systems are mainly dominated by silver-based antibacterial agents. In addition to being easily oxidized and agglomerated, their biological safety is still controversial.
Under this background, carbon nanomaterials have attracted much attention due to their wide range of raw materials, special structural characteristics, physical and chemical properties, and relatively good biocompatibility. The carbon nanomaterials introduced in this paper mainly include carbon nanotubes, graphene materials, carbon dots and their derivatives, which are widely used at present. The existing research results show that carbon nanomaterials have high antibacterial activity and are not easy to produce drug resistance, and have been gradually applied in the field of antibacterial.
In this paper, the characteristics and antibacterial mechanism of carbon nanomaterials are reviewed. The application status of carbon nanomaterials in the field of medical antibacterial is introduced, and the application prospect of carbon nanomaterials in medical catheter is prospected,which can provide a reference for solving urinary tract infections associated with catheters.
Key words:  drug-resistance bacteria    carbon nanomaterials    antibacterial    medical application
                    发布日期:  2020-07-01
ZTFLH:  TB34  
基金资助: 山西省重点研发计划项目(201703D32015-4);山西省优秀人才科技创新项目(201805D211001)
作者简介:  张超,2018年7月毕业于山西医科大学,获得临床医学学士学位。现为山西医科大学附属白求恩医院硕士研究生,在张利教授和杨永珍教授的指导下进行研究。目前主要研究领域为碳纳米材料在抗菌导管中的应用;张利,山西省白求恩医院副主任医师,硕士研究生导师。2001年7月在山西医科大学取得硕士学位,2012年11月在太原理工大学材料学院取得博士学位。近年来,在抗菌纳米材料及抗菌导管领域发表论文多篇,并先后承担省市课题6项,获国家发明专利3项,实用新型专利3项。
引用本文:    
张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
ZHANG Chao, ZHANG Li, LIU Xinghua, CHEN Lin, YANG Yongzhen, YU Shiping. Research Advances in Antibacterial Properties and Applications in Biomedicine of Carbon Nanomaterials. Materials Reports, 2020, 34(Z1): 53-57.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/53
1 Noorden R V. Nature,2011,469(2),14.
2 Iijima S. Nature,1991,354(6348),56.
3 Kang S, Pinault M, Pfefferle L D, et al. Langmuir,2007,23(17),8670.
4 Arias L R, Yang L. Langmuir,2009,25(5),3003.
5 孟洁,郭小天,孔桦,等.基础医学与临床,2010,30(9),897.
6 Michael M. Materials,2016,9(8),617.
7 Ji H W, Sun H J, Qu X G. Advanced Drug Delivery Reviews,2016,105,176.
8 Palmieri V, Bugli F, Lauriola M C, et al. ACS Biomaterials Science & Engineering,2017,3(4),619.
9 Novoselov K S. Science,2004,306(5696),666.
10 Hu W, Peng C, Luo W J, et a1. ACS Nano,2010,4(7),4317.
11 Akhavan O, Ghaderi E. ACS Nano,2010,4(10),5731.
12 Liu S B, Zeng T H, Hofmann M, et al. ACS Nano,2011,5(9),6971.
13 Yang J, Zang C L, Sun L, et al. Materials Chemistry Physics,2011,129(1-2),270.
14 Cai X, Lin M S, Tan S Z, et al. Carbon,2012,50(10),3407.
15 Tang J, Chen Q, Xu L G, et al. ACS Applied Materials & Interfaces,2013,5(9),3867.
16 Xu X, Ray R, Gu Y, et al. Journal of the American Chemical Society,2015,126(40),12736.
17 Stankovic N K, Bodik M, Siffalovic P, et al. ACS Sustainable Chemistry & Engineering,2018,6(3),4154.
18 Jian H J, Wu R S, Lin T Y, et al. ACS Nano,2017,11(7),6703.
19 Dou Q, Fang X, Jiang S, et al. RSC Advances,2015,5(58),46817.
20 Yang J J, Zhang X D, Ma Y H, et al. ACS Applied Materials & Interfaces,2016,8(47),32170.
21 Li Y J, Harroun S G, Su Y C, et al. Advanced Healthcare Materials,2016,5(19),2545.
22 Shvedova A, Castranova V, Kisin E, et al. Journal of Toxicology and Environmental Health,2003,66(20),1909.
23 Liu S B, Wei L, Hao L, et al. ACS Nano,2009,3(12),3891.
24 He J L, Zhu X D, Qi Z N, et al. ACS Applied Materials & Interfaces,2015,7(9),5605.
25 Zhang Y B, Ali S F, Dervishi E, et al. ACS Nano,2010,4(6),3181.
26 Kang S, Herzberg M, Rodrigues D F, et al. Langmuir,2008,24(13),6409.
27 Vecitis C D, Zodrow K R, Kang S, et al. ACS Nano,2010,4(9),5471.
28 West J D, Marnett L J. Chemical Research in Toxicology,2006,19(2),173.
29 Li J H, Wang G, Zhu H Q, et al. Scientific Reports,2014,4,4359.
30 Mingeot-Leclercq M P, Décout J L. MedChemComm,2016,7,586.
31 Tu Y S, Lv M, Xiu P, et al. Nature Nanotechnology,2013,8(8),594.
32 Liu X T, Chen K L. Langmuir,2015,31,12076.
33 Yi P, Chen K L . Environmental Science & Technology,2013,47(11),5711.
34 Zhu W P, Annette V D B, Yi X, et al. Proceedings of the National Academy of Sciences,2016,113(44),12374.
35 Akhavan O, Ghaderi E, Esfandiar A. The Journal of Physical Chemistry B,2011,115(19),6279.
36 Chen H, Wang B, Gao D, et al. Small,2013,9(16),2735.
37 Mejías Carpio I E, Santos C M, Wei X, et al. Nanoscale,2012,4(15),4746.
38 Chen J N, Peng H, Wang X P, et al. Nanoscale,2014,6(3),1879.
39 Dallavalle M, Calvaresi M, Bottoni A, et al. ACS Applied Materials & Interfaces,2015,7(7),4406.
40 Liu J J, Lu S Y, Tang Q L, et al. Nanoscale,2017,9(21),7135.
41 Lu S W, Feng C L, Nie P, et al. Journal of Aeronautical Materials,2015,35(2),12.
42 Simmons T J, Lee S H, Park T J, et al. Carbon,2009,47(6),1561.
43 Zardini H Z, Amiri A, Shanbedi M, et al. Colloids & Surfaces B Biointerfaces,2012,92(4),196.
44 Dong X L, McCoy E, Mei Z, et al. Journal of Environmental Sciences,2014,26(12),2526.
45 Aslan S, Deneufchatel M, Hashmi S, et al. Journal of Colloids & Interface Science,2012,388(1),268.
46 翁蔚宗.碳纳米材料治疗开放骨折后感染性骨缺损及伤口疤痕的研究.博士学位论文,第二军医大学,2017.
47 郑奋薇,蔡桂程,梁美莲,等.解放军医学院学报,2018,39(6),494.
48 李霞.实用临床医学,2013,14(11),111.
49 Marx D E, Barillo D J. Burns,2014,40,S9.
50 Rizzello L, Pompa P P. Chemical Society Reviews,2014,43,1501.
51 Zou X F, Zhang L, Wang Z J, et al. Journal of the American Chemical Society,2016,138(7),2064.
52 Szunerits S, Boukherroub R. Journal of Materials Chemistry B,2016,4,6892.
53 Al-Jumaili A, Alancherry S, Bazaka K, et al. Materials,2017,10(9),1066.
54 Wang L L, Hu C, Shao L Q. International Journal of Nanomedicine,2017,12,1227.
55 Huh A J, Kwon J Y. Controlled Release,2011,156(2),128.
[1] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[2] 孙美玲, 黄肖容, 王立栋. Cu-Zn/α-Al2O3中空纤维抗菌膜的制备与性能研究[J]. 材料导报, 2020, 34(6): 6024-6028.
[3] 王海风, 徐桂香, 董芸谷, 熊能, 王若轩. 利用离子交换法制备高强载银抗菌玻璃及其性能测试[J]. 材料导报, 2020, 34(12): 12040-12044.
[4] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[5] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[6] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[7] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[8] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[9] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[10] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[11] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[12] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[13] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[14] 陈志, 孙聪, 朱亚楠, 葛明桥. 熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能[J]. 《材料导报》期刊社, 2018, 32(8): 1333-1337.
[15] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed