Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 43-47    
  无机非金属及其复合材料 |
Mg2(Si,Sn)基热电材料研究进展
李鑫1, 谢辉1, 杨宾2, 李双明2
1 西安航空学院材料工程学院,西安 710077;
2 西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress on the Mg2(Si,Sn) Based Thermoelectric Materials
LI Xin1, XIE Hui1, YANG Bin2, LI Shuangming2
1 School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China;
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 4216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料又称温差电材料,是利用固体中载流子和声子的输运及其相互作用实现热电相互转换的新型功能材料。热电材料可以将太阳辐射、工业废热、汽车尾气余热等转换成电能,对缓解污染和能源压力有重要意义。此外,热电制冷器件也具有低噪音、无污染、体积小和反应灵敏等压缩机制冷所不具备的优点,近年来受到研究者的广泛关注。材料的热电转换性能通过热电优值ZT表征,如何提高热电转换效率(即提高ZT值)成为研究者关注的热点。
作为最具潜质的中温区热电材料之一,Mg2(Si,Sn)基热电材料由于其低廉的成本和无毒无害等优点,过去十几年被广泛研究。近年来,研究者们尝试了多种方法(如高频感应熔炼、固相反应加热压烧结、两步固相反应加放电等离子烧结和快速凝固加等离子活化烧结等)来获得高质量的Mg2(Si,Sn)块体。除此之外,研究者们还利用能带工程、单元素和双元素掺杂等方法来进一步提高材料的ZT值,这些方法可以使合金的ZT值从0.5提高到1.55。但是这类基于固相反应加烧结来制备纳米级晶粒块体材料的方法存在反应不完全和服役过程中晶粒易发生长大等问题。而且由于Mg元素极高的化学活泼性和挥发性,以及组成合金的各元素之间较大的熔点差,给熔炼法制备Mg2(Si,Sn)块体材料带来了很大的困难,极大地限制了材料热电性能的优化。因此,如何制备高质量的Mg2(Si,Sn)块体材料成为亟待解决的难题。
本文综述了Mg2(Si,Sn)基热电材料制备方法的最新研究进展,以及能带工程和掺杂元素的选择等ZT值优化途径,提出存在的问题和未来的发展方向。同时,本文提出采用材料定向凝固方法制备Mg2(Si,Sn)单晶材料,并利用单晶各向异性来优化其热电性能,此方法有望解决纳米级晶粒块体材料服役过程中出现晶粒长大而导致的性能恶化问题,同时为此类合金热电材料的性能优化提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鑫
谢辉
杨宾
李双明
关键词:  定向凝固  热电材料  Mg2(Si,Sn)  能带工程    
Abstract: Thermoelectric functional material can realize the conversion between thermal and electric energy by the carrier and phonon transport and interaction. Solar radiation, industrial and automobile waste heat can be converted to electric energy by thermoelectric materials. It has great significance to alleviate the pressure of environmental pollution and energy. In addition, because of the advantages of low noise, non-pollution, small size and sensitive response, thermoelectric device has received extensive attention from researchers in recent years. The performance of thermoelectric material is characterized by the figure of merit ZT. How to improve the conversion efficiency of thermoelectric materials, i.e. improve the ZT value, becomes the research hotspot.
As one of the most potential medium temperature thermoelectric materials, Mg2(Si,Sn) alloy has been widely researched due to the advantage of low cost and non-toxic. Researchers have tried some synthetic methods to obtain high quality Mg2(Si,Sn) bulk, such as high frequency induction melting, solid reaction and hot press sintering, two step solid reaction and spark plasma sintering, rapid solidification and plasma activated sintering. In addition, band engineering, single and double elements doping are also used to further optimize the performance, and the ZT values are improved from 0.5 to 1.55. However, this kind of bulk materials with nano-sized grains exists the problem of incomplete reaction and grain growth during service. Furthermore, the chemical activity and volatility of Mg and large melting point difference between elements bring great difficulties to the synthesis of Mg2(Si,Sn) by melting methods, and extremely limited the optimization of thermoelectric performance. Therefore, preparation of high quality Mg2(Si,Sn) bulk remains an urgent issue.
In this paper, the latest research progress of preparation processes, band engineering application, and the choice of doping elements for Mg2(Si,Sn) based thermoelectric materials are summarized. The existing problems and development direction in the future are presented. We also put forward the method of Mg2(Si,Sn) single crystal growth by directional solidification. And the thermoelectric performance can be optimized by the anisotropy of single crystal. This method is expected to solve the problem of performance deterioration caused by nano-sized grain growth during service. At the same time, a different path of thermoelectric performance optimization is put forward for this kind of alloys.
Key words:  directional solidification    thermoelectric materials    Mg2(Si,Sn)    band engineering
                    发布日期:  2020-07-01
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金委青年项目(51904219);西安航空学院校级科研基金项目(2019KY0203)
作者简介:  李鑫,2018年6月毕业于西北工业大学材料学院,获得工学博士学位。现为西安航空学院材料工程学院讲师。目前主要研究领域为定向凝固、热电材料和第一性原理计算。
引用本文:    
李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
LI Xin, XIE Hui, YANG Bin, LI Shuangming. Research Progress on the Mg2(Si,Sn) Based Thermoelectric Materials. Materials Reports, 2020, 34(Z1): 43-47.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/43
1 Snyder G J, Toberer E S. Nature Materials,2008,7(2),105.
2 Zhao L D, Dravid V P, Kanatzidis M G. Energy Environmental Science,2013,7(1),251.
3 Wang Y Z, Zhang X, Wang Y, et al. Physica Status Solidi (a),2019,216(6),1800811.
4 Shi X, Chen L D. Nature Materials,2016,15(7),691.
5 Tazebay A S, Yi S, Lee J K, et al. ACS Applied Materials & Interfaces,2016,8(11),7003.
6 Chen X X, Wu H J, Cui J, et al. Nano Energy,2018,52,246.
7 Sales B C. Science,2002,295(5558),1248.
8 Jiang Q H, Yan H X, Khaliq J, et al. Journal of Materials Chemistry A,2014,2,5785.
9 Bellucci A, Mastellone M, Girolami M, et al. Applied Surface Science,2017,418,589.
10 Poudel B, Hao Q, Ma Y, et al. Science,2008,320(5876),634.
11 Zhao L D, Tan G, Hao S, et al. Science,2016,351(6269),141.
12 Song L R, Zhang J W, Iversen B B. Physical Chemistry Chemical Phy-sics,2019,21(8),4295.
13 Boor J D, Saparamadu U, Mao J, et al. Acta Materialia,2016,120,273.
14 Luo J, You L, Zhang J Y, et al. ACS Applied Materials & Interfaces,2017,9(10),8729.
15 王怡心,马勤,贾建刚,等.材料导报,2019,33(S1),403.
16 包鑫,柏胜强,吴子华,等.材料导报:综述篇,2019,33(3),784.
17 Wang H Q, Li S M, Li X, et al. Journal of Crystal Growth,2017,466,56.
18 Chen C, Zhang L, Li J H, et al. Journal of Alloys and Compounds,2017,699 751.
19 Mao J, Kim H S, Shuai J, et al. Acta Materialia,2016,103,633.
20 Kutorasinski K, Wiendlocha B, Tobola J, et al. Physical Review B,2014,89(11),115205.
21 Valset K, Flage-Larsen E, Stadelmann P, et al. Acta Materialia,2012,60(3),972.
22 Chen H Y, Savvides N. Journal of Electronic Materials,2009,38(7),1056.
23 Polymeris G S, Vlachos N, Khan A U, et al. Acta Materialia,2015,83,285.
24 Fan W H, Chen S P, Zeng B, et al. ACS Applied Materials & Interfaces,2017,9(34),28635.
25 Tan X J, Liu W, Shi H J, et al. Physical Review B,2012,85(20),205212.
26 曹萌萌,周园,任秀峰,等.硅酸盐通报,2012,31(5),1145.
27 Liu X H, Wang Y, Sofo J O, et al. Journal of Materials Research,2015,30(17),2578.
28 Li X, Li S M, Feng S K, et al. Journal of Electronic Materials,2018,47(2),1022.
29 Zaitsev V, Fedorov M, Gurieva E, et al. Physical Review B,2006,74(4),45207.
30 Zhang Q, He J, Zhu T J, et al. Applied Physics Letter,2008,93(10),102109.
31 Liu W, Tang X, Li H, et al. Chemistry of Materials,2011,23(23),5256.
32 Liu W, Zhang Q, Yin K, et al. Journal of Solid State Chemistry,2013,203,333.
33 Bellanger P, Gorsse S, Bernard G, et al. Acta Materialia,2015,95,102.
34 Zhang Q, Zheng Y, Su X L, et al. Scripta Materialia,2015,96,1.
35 Li X, Li S M, Feng SK, et al. Journal of Electronic Materials,2016,45(6),2895.
36 Li X, Li S M, Feng S K, et al. Intermetallics,2017,81,26.
37 Pei Y Z, Shi X Y, Lalonde A, et al. Nature,2011,473(7345),66.
38 Zhao L D, Wu H J, Hao S Q, et al. Energy & Environmental Science,2013,6(11),3346.
39 Lv H Y, Lu W J, Shao D F, et al. Physical Review B,2014,90(8),85433.
40 Kim H S, Heinz N A, Gibbs Z M, et al. Materials Today,2017,20(8),452.
41 Banik A, Shenoy U S, Anand S, et al. Chemistry of Materials,2015,27(2),581.
42 Tan G J, Shi F Y, Hao S Q, et al. Journal of the American Chemical Society,2015,137(15),5100.
43 Bahk J, Bian Z X, Shakouri A. Physical Review B,2014,89(7),075204.
44 Liu W, Tan X J, Yin K, et al. Physical Review Letters,2012,108(16),166601.
45 Tan X J, Liu G Q, Shao H Z, et al. Applied Physics Letters,2017,110(14),143903.
46 Du Z L, Zhu T J, Zhao X B. Materials Letters,2012,66(1),76.
47 Liu W, Chi H, Sun H, et al. Physical Chemistry Chemical Physics,2014,16(15),6893.
48 Gao P, Lu X, Berkun I, et al. Applied Physics Letters,2014,105(20),202104.
49 Khan A U, Vlachos N, Kyratsi T. Scripta Materialia,2013,69(8),606.
50 Jiang G Y, He J, Zhu T J, et al. Advanced Functional Materials,2014,24(24),1.
51 Yin K, Su X L, Yan Y G, et al. Scripta Materialia,2017,126,1.
[1] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[2] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[3] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[4] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[5] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[6] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[7] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[8] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[9] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[10] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[11] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[12] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[13] 李勇, 朱靖, 王莹, 李焕, 赵亚茹. 定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理[J]. 《材料导报》期刊社, 2018, 32(4): 602-605.
[14] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[15] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed