Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 120-127    
  无机非金属及其复合材料 |
油茶果壳高值化利用研究进展
刘竹1, 杨守禄1,2, 姬宁1, 罗扬1, 许杰1, 吴义强2
1 贵州省林业科学研究院,贵阳 550005;
2 中南林业科技大学材料科学与工程学院,长沙 410004
Research Progress on Higher Value Application of Camellia Oleifera Shells
LIU Zhu1, YANG Shoulu1,2, JI Ning1, LUO Yang1, XU Jie1, WU Yiqiang2
1 Guizhou Academy of Forestry, Guiyang 550005, China;
2 School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 9652KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 油茶(Camellia oleifera abel) 是我国特有的木本食用油料树种,属山茶科山茶属,在南方有大面积的种植。油茶果壳是油茶果实加工后产生的副产物,随着油茶产业的兴起,每年都会产生大量的油茶果壳。过去油茶果壳的处理方式通常为填埋或直接燃烧,这不仅造成了资源的浪费,还产生了环境污染等问题。对其进行充分利用有助于解决油茶果壳的处理问题,也是提升油茶附加值的重要途径,同时为废弃生物质材料的再生利用开辟了新方向,具有广阔的市场空间和应用前景。活性炭的制备是油茶果壳最普遍的研究,由于油茶果壳复杂的成分和特殊的结构,不同工艺所制备的活性炭性能差异大,且最佳制备工艺还尚无定论。近年来,研究人员不断在活化工艺方面进行优化,并且制备出不同功能的生物质炭衍生材料。此外,根据油茶果壳的多种成分,以油茶果壳为基体的复合材料、茶皂素的提取及其中不同成分的利用已成为当前研究的焦点。油茶果壳成分中所含有的纤维素、半纤维素及木质素作为木质复合材料基体与其他材料的相容性还有待进一步研究;茶皂素、水溶性多糖及类黄酮等物质使得油茶果壳成为众多应用的理想原料,如吸附、脱色、抗癌、抗氧化等。本文从油茶果壳的各种成分及结构特征切入,介绍了油茶果壳在油茶果壳基复合材料、活性炭及茶皂素的提取及应用方面的最新研究,同时结合当今研究的热点如纳米纤维素材料、电极材料等,介绍了油茶果壳在其中积极的作用,以期为油茶果壳的高值化利用提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘竹
杨守禄
姬宁
罗扬
许杰
吴义强
关键词:  油茶果壳  活性炭  茶皂素  油茶果壳基复合材料    
Abstract: Camellia oleifera Abel is the main woody edible oil tree unique to China with a large area planted in the south.With the rise of Camellia oleifera industry, a large number of Camellia oleifera shell which is a by-product of the processing of Camellia oleifera fruit is produced every year. In the past, the treatment of Camellia oleifera shell was usually landfill or direct combustion, which not only wasted resources, but also caused environmental pollution and other problems. Full utilization of them can reduce environmental pollution, and increase the additional value, displaying extensive market potential and application prospect. The preparation of activated carbon is the most common study of Camellia oleifera fruit shell. Because of the complex composition and special structure of Camellia oleifera fruit shell, the properties of activated carbon prepared by different processes differ greatly, and the optimum preparation process is still uncertain.In recent years, researchers have been continuously optimizing the activation process and preparing biomass carbon derivatives with different functions. In addition, according to the various components of the shell of Camellia oleifera, research on the composite material based on the shell of Camellia oleifera, extraction of tea saponin and the utilization of different components have become the focus of current research. Further research is needed to improve the compatibility between the shell of Camellia oleifera and other materials.In addition, tea saponins, water-soluble polysaccharides and flavonoids make the shell of Camellia oleifera an ideal raw material for many applications, such as adsorbents, decolorants, anticancer, antioxidant, etc. Herein, the latest research on the extraction and application of Camellia oleifera shell composites, activated carbon and tea saponin was introduced from the components and structu-ral characteristics of Camellia oleifera shell. At the same time, combining with the hotspots of current research, such as nano-cellulose materials and electrode materials, the active role of Camellia oleifera shell in the extraction and application of Camellia oleifera shell was introduced, providing a basis for the high value utilization of Camellia oleifera shell.
Key words:  Camellia oleifera shells    activated carbon    tea saponin    Camellia oleifera shell based composite
                    发布日期:  2020-07-01
ZTFLH:  TS229  
基金资助: 贵州省科技计划项目(黔科服企[2018](4003);黔科合平台人才[2018]5252);贵州省林业科研课题(黔林科合[2019]3号;黔林科合[2019]5号;黔林科合J字[2019]07号)
作者简介:  刘竹,2016年毕业于南京林业大学材料科学与工程学院,获工学学士学位;2019年毕业于南京林业大学材料科学与工程学院,获木材科学与技术硕士学位。现就职于贵州省林业科学研究院林业产业研究所。主要从事生物质复合材料、木竹材改性、木材鉴定以及木质材料检测方面科研工作;杨守禄,2011年毕业于西南林业大学,获木材科学与工程专业学士学位,2014年毕业于中南林业科技大学获木材科学与技术硕士学位,2017年开始攻读中南林业科技大学木材科学与技术博士学位。现就职于贵州省林业科学研究院,助理研究员,主要从事木竹材功能性改良和生物质复合材料研究。近年来,主持完成贵州省自然科学基金、贵州省科技支撑计划等项目3项,作为骨干成员参与完成贵州省科技重大专项2项,发表学术论文10余篇。
引用本文:    
刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
LIU Zhu, YANG Shoulu, JI Ning, LUO Yang, XU Jie, WU Yiqiang. Research Progress on Higher Value Application of Camellia Oleifera Shells. Materials Reports, 2020, 34(Z1): 120-127.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/120
1 王瑞,陈永忠.林业工程学报,2015,29(4),6.
2 刘雪梅,陈嘉玮,王宇航.应用化工,2018(1),190.
3 Zhu J J, Zhu Y Y, Jiang F X, et al. Carbohydrate Research,2013,382,52.
4 Zhao K, Liu S F, Li K X, et al. Molecular Catalysis,2017,433,193.
5 Zong J F, Wang R L, Bao G H, et al. Fitoterapia,2015,104,7.
6 胡孔飞,马晓伟,莫小勤.湖南林业科技,2017,44(4),60.
7 Zhang J T, Gong L Y, Sun K, et al. Journal of Solid State Electrochemistry,2012,16(6),2179.
8 Li Z G, Liu Z F, Wu Z B, et al. Applied Physics A,2018,124(5),398.
9 Hu J B, Shi Y, Liu Y, et al. Protoplasma,2018,255(6),1777.
10 Guo H Q, Bi C Y, Zeng C C, et al. Journal of Molecular Liquids,2017,249,629.
11 Wang Q Q, Chang S S, Tan Y J, et al. Protoplasma,2019,256(4),1145.
12 Papadopoulos A N, Hill C A S, Gkaraveli A. Holzals Rohund Werkstoff,2003,61(6),453.
13 Clair B, Gril J, Di Renzo F, et al. Biomacromolecules,2008,9(2),494.
14 苌姗姗,胡进波,Bruno C,等.林业科学,2011,47(10),134.
15 何盛,徐军,吴再兴,等.南京林业大学学报(自然科学版),2017,41(2),158.
16 Fu S X, Han G P, Cheng W L, et al. Advanced Materials Research,2010,143-144,1429.
17 Wu TT, Wang X L, Kito K. Engineering in Agriculture, Environment and Food,2015,8(3),123.
18 Zhang W R, Sun H G, Zhu C, et al. RSC Advances,2018,8(27),15188.
19 邓亚峰,崔若昕,汪梓玉,等.中国塑料,2018,32(7),11.
20 梁秋群,刘峥,艾慧婷,等.化工学报,2020,71(5),2292.
21 彭开元.油茶果壳基木质复合材料的制备与性能研究.硕士学位论文,中南林业科技大学,2016.
22 Danish M, Ahmad T. Renewable and Sustainable Energy Reviews,2018,87,1.
23 Keey L R, Elfina A, Yuh Y P N, et al. Bioresource Technology,2018,266,1.
24 Zhang L X, Gu H Z, Sun H B, et al. Carbon,2018,132,573.
25 Zhou J Z, Luo A R, Zhao Y C. Journal of the Air & Waste Management Association,2018,68(12),1269.
26 Javier P, González-Cencerrado A, Arauzo I. Biomass and Bioenergy,2018,115,64.
27 González-García P. Renewable and Sustainable Energy Reviews,2017,82,1393.
28 Li K X, Liu S F, Shu T, et al. Materials Chemistry and Physics,2016,181(15),518.
29 Ma W T, Li K X, Guo H Q, et al. Microporous and Mesoporous Mate-rials,2017,250,195.
30 Thompson B R, Horozov T S, Stoyanov S D, et al. Journal of Materials Chemistry A,2019,7,8030.
31 Fan F Y, Zheng Y W, Huang Y B, et al. Energy & Fuels,2017,31(8),8146.
32 Ma B B, Huang Y W, Nie Z Z, et al. RSC Advances,2019,35(9),20424.
33 Liang J Y, Qu T T, Kun X, et al. Applied Surface Science,2018,436,934.
34 Nakajima K, Hara M. ACS Catalysis,2012,2(7),1296.
35 Guo F, Fang Z, Zhou T J. Bioresource Technology,2012,112,313.
36 Zhao K, Liu S, Li K, et al. Molecular Catalysis,2017,433,193.
37 Chen C K, Zhao X L, Shi C L, et al. Journal of Materials Science,2018,53(8),6053.
38 Chen H D, Wang J H, Ni A Q, et al. Materials,2018,11(1),111.
39 Ran S Y, Guo Z H, Fang Z P, et al. Composites Communications,2018,8,19.
40 Qian W, Li X Z, Wu Z P, et al. Journal of Agricultural and Food Che-mistry,2015,63(10),2782.
41 Qian W, Li X Z, Wu Z P. Advanced Materials Research,2014,875-877,1318.
42 Wang N, Hu L D, Babu H V, et al. Journal of Thermal Analysis and Calorimetry,2017,128(2),1133.
43 Qian W, Li X Z,Zhou J, et al. Progress in Organic Coatings,2019,127,408.
44 Chen X Y, Kumari D, Cao C J, et al. Human and Ecological Risk Assessment: An International Journal,2019,1.
45 Ye M, Sun M M, Xie S N, et al. Pedosphere,2017,27,452.
46 Ye M, Sun MM, Wan J Z, et al. Journal of Chemical Technology & Biotechnology,2015,90(11),2027.
47 Yu X L, He Y. RSC Advances,2018,8(43),24312.
48 李榜江,李萍.中国水土保持,2017(3),34.
49 Wu Z N, Xie M M, Li Y, et al. AMB Express,2018,8(1),27.
50 Tang S Y, Bai J Q, Yin H, et al. Chemosphere,2014,114,255.
51 Habibi Y, Lucia L A, Rojas O J. Chemical Reviews,2010,110(6),3479.
52 Trache D, Hussin M H, Haafiz M K M, et al. Nanoscale,2017,9(5),1763.
53 Ludueña A L N, Vecchio A, Pablo M Stefani, et al. Fibers and Polymers,2013,14(7),1118.
54 Yousefi H, Faezipour M, Hedjazi S, et al. Industrial Crops and Products,2013,43,732.
55 Adel A M, El-Gendy A A, Diab M A, et al. Industrial Crops and Pro-ducts,2016,93,161.
56 Yao J, Huang H B, Mao L, et al. Fibers and Polymers,2017,18(11),2118.
57 姚进,李知函,史军华,等.精细化工,2018,35(11),1853.
58 史军华,姚进,李知函,等.精细化工,2020,37(1),45.
59 Jin X C. Carbohydrate Polymers,2012,87(3),2198.
60 Ye Y, Guo Y, Luo Y T, et al. Fitoterapia,2012,83(8),1585.
61 Su Y Y, Zhao B L, Wei X, et al. Environmental Science and Pollution Research International,2013,20(8),5558.
62 Chakraborty S, Chowdhury S, Saha P D. Carbohydrate Polymers,2011,86(4),1533.
63 Dawood S, Sen T K. Water Research,2012,46(6),1933.
64 宋冬阳,郭会琴,颜流水.环境工程学报,2014,8(12),5129.
65 张辉.油茶壳纤维素提取、改性及其对铜离子的吸附性能研究.硕士学位论文,江西理工大学,2016.
[1] 张净净, 李海朝. 磷酸活化鱼鳞活性生物炭的制备及表征[J]. 材料导报, 2020, 34(Z1): 116-119.
[2] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[3] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[4] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[5] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[6] 高军, 陈学能, 蔡跃宗, 黄连清, 林宏名, 杨勇. 活性炭对铅酸电池负极活性物质结构与性能的影响[J]. 材料导报, 2019, 33(20): 3347-3352.
[7] 林星, 林冠烽, 黄彪1. 物理化学活化法制备红麻杆基活性炭及其表征[J]. 材料导报, 2019, 33(1): 198-202.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 阳锋, 杨淑颐, 魏子斐, 王莉淋. 过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用[J]. 材料导报, 2018, 32(20): 3654-3659.
[10] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[11] 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018, 32(17): 3083-3089.
[12] 李严, 王欣, 黄金田. 沙柳活性炭纤维改性及其对铅离子的吸附性能[J]. 《材料导报》期刊社, 2018, 32(14): 2360-2365.
[13] 李祥,郑峰,罗援,罗泳梅. 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 《材料导报》期刊社, 2018, 32(12): 1949-1954.
[14] 李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
[15] 宋晓岚, 刘汉俊, 王海波, 段海龙, 张颖, 刘时超, 周永鑫, 周志海. 预活化时间对稻壳基活性炭结构和电化学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 25-29.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed