Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12010-12014    https://doi.org/10.11896/cldb.19060119
  无机非金属及其复合材料 |
具有高比电容的蘑菇衍生碳材料
张文林1,2, 冉奋1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Mushroom Derived Carbon Material with High Specific Capacitance
ZHANG Wenlin1,2, RAN Fen1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 36614KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三种不同种类的蘑菇为前驱体,经过高温热处理和氢氧化钾(KOH)活化,制备生物质炭;将制备的碳材料作为电化学活性物质,应用于电极并组装超级电容器器件。扫描电子显微镜(SEM)表征结果表明,蘑菇碳为不规则的块状结构,改性后的碳材料表面出现明显刻蚀及孔结构,氮气吸脱附曲线及孔径分布进一步说明活化后其比表面积和孔隙率发生显著变化。通过循环伏安(CV)、恒流充放电(GCD)和电化学阻抗谱(EIS)对其电化学性能进行测试,结果表明,三种碳材料在6 mol/L 氢氧化钾电解液中均展现出优异的电化学性能。以杏鲍菇为前驱体制备的碳材料在电流密度为0.5 A/g时比电容高达427 F/g,其组装的对称器件在功率密度为150 W/kg时,能量密度可达7.8 Wh/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文林
冉奋
关键词:  生物质炭  氢氧化钾活化  超级电容器    
Abstract: In this paper, the carbon materials were prepared by high temperature heat treatment and KOH activation with three different kinds of mushrooms as precursors, the prepared carbon materials were used as electrochemical active substances and further used as electrodes and assemble supercapacitors. The results of scanning electron microscope (SEM) showed that the structure of the mushroom carbon was bulk, and a large number of pore structures appeared on the surface after modification. Nitrogen adsorption and desorption curves and the pore size distribution further indicated the significant changes of specific surface area and the porosity. The electrochemical performances of the materials were analyzed by cyclic voltammograms (CV), galvanostatic charge-discharge (GCD) and the electrochemical impedance spectroscopy (EIS) in 6 mol/L KOH electrolyte solution. All three carbon materials exhibited excellent electrochemical performance. The capacitance of the carbon material derived from pleurotus eryngii up to 427 F/g at the current density of 0.5 A/g. In addition, at a power density of 150 W/kg, the supercapacitor device delivers a high energy density of 7.8 Wh/kg.
Key words:  biochar    potassium hydroxide activation    supercapacitor
                    发布日期:  2020-05-29
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(51203071;51763014);兰州理工大学红柳杰出青年;沈阳材料科学国家实验室-兰州理工大学有色金属先进加工与再利用省部共建国家实验室联合基金(18LHPY002)
通讯作者:  ranfen@163.com   
作者简介:  张文林,硕士研究生,师承冉奋教授,主要从事超级电容器电极材料的研究。
冉奋,教授/博导, 甘肃省“飞天学者”青年学者。四川大学高分子材料工程国家重点实验室博士, 新加坡国立大学、美国加州大学圣克鲁斯分校、美国加州大学圣巴巴拉分校访问学者。担任《电子元件与材料》编委、中国生物材料学会血液净化材料分会委员。主要从事高分子能源材料和生物医用高分子的研究。
引用本文:    
张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
ZHANG Wenlin, RAN Fen. Mushroom Derived Carbon Material with High Specific Capacitance. Materials Reports, 2020, 34(12): 12010-12014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060119  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12010
1 Lin T Q, Chen I W, Liu F X, et al. Science,2015,350(6267),1508.
2 Jin H L, Li J, Yuan Y F, et al. Advanced Energy Materials,2018,8(23),1801007.
3 Wang K, Zhao N, Lei S W, et al. Electrochimica Acta,2015,166,1.
4 Wang J, Nie P, Ding B, et al. Journal of Materials Chemistry A,2017,5(6),2411.
5 Wang Y Y, Hou B H, Ning Q L, et al. Nanotechnology,2019,30(21),214002.
6 Liu B, Liu Y J, Chen H B, et al. Journal of Power Sources,2017,341,309.
7 Gong Y N, Li D L, Luo C Z, et al. Green Chemistry,2017,19(17),4132.
8 Sankar S, Ahmed A T A, Inamdar A I, et al. Materials & Design,2019,169,107688.
9 Wang Z, Tan Y T, Yang Y L, et al. Journal of Power Sources,2018,378,499.
10 Qi F L, Xia Z X, Sun R L, et al. Journal of Materials Chemistry A,2018,6(29),14170.
11 Yang J, Hu J T, Zhu M, et al. Journal of Power Sources,2017,365,362.
12 Du G X, Bian Q X, Zhang J B, et al. RSC Advances,2017,7(73),46329.
13 Wu H L, Deng Y L, Mou J R, et al. Electrochimica Acta,2017,242,146.
14 Wang J C, Kaskel S. Journal of Materials Chemistry,2012,22(45),23710.
15 Bhattacharjya D, Yu J S. Journal of Power Sources,2014,262,224.
16 Bello A, Barzegar F, Momodu D, et al. Electrochimica Acta,2015,151,386.
17 Peng C, Yan X B, Wang R T, et al. Electrochimica Acta,2013,87(1),401
18 Zou K X, Deng Y F, Chen J P, et al. Journal of Power Sources,2018,378,579.
19 Chen C, Yu D F, Zhao G Y, et al. Nano Energy,2016,27,377.
20 Feng H B, Hu H, Dong H W, et al. Journal of Power Sources,2016,302,164.
21 Cheng P, Li T, Yu H, et al. The Journal of Physical Chemistry C,2016,120(4),2079.
22 Cheng P, Gao S Y, Zang P Y, et al. Carbon,2015,93,315.
23 Long C L, Chen X, Jiang L L, et al. Nano Energy,2015,12,141.
[1] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[2] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[3] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[4] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[5] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[6] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[7] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[8] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[9] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[10] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[11] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[12] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[13] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[14] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[15] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed