Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 97-103    
  无机非金属及其复合材料 |
骨肉瘤的缺氧微环境与放疗增敏进展
杜传超, 贾斐, 梁辰, 何观平, 刘晓光
北京大学第三医院,北京 100191
Hypoxic Microenvironment of Osteosarcoma and Radiotherapy Sensitization
DU Chuanchao, JIA Fei, LIANG Chen, HE Guanping, LIU Xiaoguang
Orthopaedic Department of Peking University Third Hospital, Beijing 100191
下载:  全 文 ( PDF ) ( 1931KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 放疗是恶性肿瘤重要的辅助治疗手段,但骨肉瘤对放疗不是十分敏感,存在一定的放疗抵抗。即相对于对放射线敏感的肿瘤(如视网膜母细胞瘤、鼻咽癌、卵巢癌中的无性细胞瘤、睾丸精原细胞瘤、肾胚胎瘤、恶性淋巴瘤等)来讲,同等或更大的放射剂量也难以达到敏感肿瘤所能有的局部控制率。许多研究表明,低剂量分次放疗(2 Gy/次,共60 Gy)的5年局部控制率为40%~68%,但5年的局部控制率和生存率并没有相关性。近几年,骨肉瘤具有固有的放疗抵抗性的概念已经受到多项研究的质疑,有的骨肉瘤的放疗效果要好于黑色素瘤,而黑色素瘤是公认的放疗抵抗肿瘤。此外,若采取大分割治疗(总量不变,提高每次的放疗剂量),虽然骨肉瘤对普通X射线不算敏感,但其对质子和重离子治疗应答率明显提高。因此选择适当的患者、采取合适的放疗方法可以提高放疗效果。
放疗抵抗的直接原因是肿瘤细胞对DNA损伤的修复能力和耐受能力,这和肿瘤的异质性有关。许多研究表明低氧微环境是放疗抵抗最重要的环境因素。首先,缺氧微环境为肿瘤细胞产生放疗抵抗提供重要的发生条件,缺氧微环境刺激细胞产生低氧诱导因子(Hypoxia inducible factors,HIF),缺氧预处理可增加骨肉瘤细胞的放疗抵抗,缺氧诱导因子(HIF-1、HIF-2)、自噬相关因子(LC3-Ⅱ)在骨肉瘤组织中高表达,若敲除HIF基因后,细胞自噬水平和凋亡显著升高,但抑制自噬后,细胞凋亡并没有减少,说明细胞在缺氧微环境中主要通过HIF实现放化疗抵抗。放疗后DNA损伤的修复能力也是放疗抵抗的机制之一,通过长时间监测DNA损伤的修复蛋白γ-H2AX和53BP1,即可评估DNA损伤的修复情况。
针对引起放疗抵抗的原因,改变肿瘤缺氧微环境是放疗增敏的有效手段,主要有增加氧供应和研究靶向缺氧细胞的化学增敏药物。高压氧舱可提供高压氧环境,直接增加肿瘤组织的含氧量,但患者依从性较差,增敏效果不确切。结合尼克酰胺(针对急性缺氧)与慢性缺氧改良剂(如O2和CO2气体的混合物)可明显改善肿瘤组织的急慢性缺氧环境,从而增强放疗的效果。此外,有人提出热疗是克服放疗抵抗、增加放疗敏感性的有效方法,研究证明放疗同时把瘤组织加热到43 ℃可显著提高放疗效果。
未来,骨肉瘤的放疗将在放疗增敏研究的基础上,结合立体定向放疗、质子放疗和重离子放疗等先进技术手段,低剂量、高精准,和手术治疗及化疗有机结合,实现更好的治疗效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜传超
贾斐
梁辰
何观平
刘晓光
关键词:  骨肉瘤  缺氧微环境  放疗抵抗  放疗增敏    
Abstract: Radiotherapy is an important adjuvant treatment for malignant tumors, but osteosarcoma is not very sensitive to radiotherapy, furthermore, there is a certain radiotherapy resistance. Radiation doses, equivalent to or larger than radiation-sensitive tumors needed (such as retinoblastoma, nasopharyngeal carcinoma, ovarian cancer in ovarian cancer, testicular seminoma, renal embryonal tumor, malignant lymphoma, etc.), are not enough to achieve local control rates. Many studies have shown that the 5-year local control rate of low-dose fractionated radiothe-rapy for osteosarcoma (2 Gy/time, total 60 Gy) is 40%—68%, but there is no correlation between 5-year local control rate and survival rate. However, the concept of osteosarcoma with inherent radiotherapy resistance has been questioned by many studies. Some osteosarcoma have better radiotherapy effects than melanoma, while melanoma is recognized as a radiotherapy-resistant tumor. In addition, if a large fractionated radiotherapy is taken (the total amount is unchanged, increasing the dose of each radiotherapy),although osteosarcoma is not sensitive to ordinary X-rays, its response rate to proton and heavy ion treatment is significantly improved. Therefore, choosing the appropriate patient and adopting appropriate radiotherapy methods can improve the radiotherapy effect.
The direct cause of radiotherapy resistance is the ability of tumor cells to repair DNA damage, which is related to tumor heterogeneity. Many studies have shown that hypoxic microenvironment is the most important environmental factor for radiotherapy resistance. First, the hypoxic mic-roenvironment provides an important condition for the development of radiotherapy resistance in tumor cells. Hypoxic microenvironment stimulates cells to produce hypoxia-inducible factors (HIF). Hypoxic preconditioning can increase the radiotherapy resistance of osteosarcoma cells. Hypo-xia-inducible factor (HIF-1, HIF-2) and autophagy-related factor (LC3-II) are highly expressed in osteosarcoma tissues. If HIF gene is knocked out, autophagy level and apoptosis are significantly increased, but inhibiting autophagy, the apoptosis did not decrease, indicating that the cells were resistant to chemoradiotherapy mainly through HIF-2 in the hypoxic microenvironment. The repair of DNA damage can be assessed by monitoring DNA damage repair proteins γ-H2AX and 53BP1 for a long time.
Therefore, changing the tumor hypoxia microenvironment is an effective means of radiosensitization. The hyperbaric oxygen chamber can provide a hyperbaric oxygen environment and directly increase the oxygen content of the tumor tissue, but the patient compliance is poor and the sensitization effect is not accurate. The combination of nicotinamide (for acute hypoxia) and chronic hypoxia improvers (such as a mixture of O2 and CO2 gases) can significantly improve the acute and chronic anoxic environment of tumor tissue, thereby enhancing the effect of radiotherapy. In addition, it has been suggested that hyperthermia is an effective method to overcome radiotherapy resistance and increase the sensitivity of radiotherapy. Studies have shown that radiotherapy can also be significantly improved by heating the tumor tissue to 43 ℃.
In the future, radiotherapy for osteosarcoma will be based on radiotherapy sensitization research, combined with advanced techniques such as stereotactic radiotherapy, proton radiotherapy and heavy ion radiotherapy and organic combination of surgical treatment and chemotherapy, to achieve better treatment effect at a low dose and high precision.
Key words:  osteosarcoma    hypoxic microenvironment    radiotherapy resistance    radiosensitization
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB3  
基金资助: 北京市自然科学基金(7192226)
通讯作者:  xgliuspine@163.com   
作者简介:  杜传超,主治医师,北京大学第三医院骨科博士研究生,北京大学校级三好学生。于山东大学齐鲁医学部获得临床医学学士学位,于北京大学第四临床医学院(北京积水潭医院)获得外科学(骨外科)硕士学士。历任清华大学第一附属医院骨科住院总医师、主治医师。现就读于北京大学第三医院,主要研究领域为骨肿瘤的诊疗及基础研究,在国内外学术期刊上发表论文10余篇。
刘晓光,教授,现任北大医学部副主任、北医三院骨科副主任、疼痛中心主任。本科毕业于北京大学,留校工作至今。作为课题负责人,承担省部级以上课题11项,发表论文220篇。全国“五一劳动奖章”获得者,获国务院“抗震救灾先进个人”荣誉称号。
引用本文:    
杜传超, 贾斐, 梁辰, 何观平, 刘晓光. 骨肉瘤的缺氧微环境与放疗增敏进展[J]. 材料导报, 2019, 33(Z2): 97-103.
DU Chuanchao, JIA Fei, LIANG Chen, HE Guanping, LIU Xiaoguang. Hypoxic Microenvironment of Osteosarcoma and Radiotherapy Sensitization. Materials Reports, 2019, 33(Z2): 97-103.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/97
1 Gaitán-Yanguas M. International Journal of Radiation Oncology, Biology, Physics,1981,7,593.
2 Delaney T F, Park L, Goldberg S I, et al. International Journal of Ra-diation Oncology, Biology, Physics,2005,61(2),492.
3 Oertel S, Blattmann C, Rieken S, et al. Tumori Journal,2010,96(4),582.
4 Tinkle C L, Lu J, Han Y, et al. Pediatric Blood & Cancer, 2019,DOI:10.1002/pbc.27763.
5 Matsunobu A, Imai R,Kamadaetal T. Cancer,2012,118(18), 4555.
6 Larsen R H, Bruland O S, Hoff P, et al. Radiation Research,1994,139(2),178.
7 Schwarz R, Bruland O, Cassoni A, et al. Cancer Treatment and Research,2009,152,147.
8 Scott M C, Sarver A L, Gavin K J, et al. Bone,2011,49(3),356.
9 Bousquet M, Noirot C, Accadbled F, et al. AnnOncol,2016,27(4),738.
10 Jawad M U, Scully S P. Clinical Orthopaedics and Related Research,2010,468(7),2000.
11 Hoeller U, Tribius S, Kuhlmey A, et al. International Journal of Radiation Oncology Biology Physics,2003,55(4),1013.
12 Ciernik I F, Niemierko A, Harmon D C, et al. Cancer,2011,117(19),4522.
13 Balkwill F R, et al. Journal of Cell Science,2012,125,5591.
14 Keith B, Simon M C. Cell,2007,129(3),465.
15 Feng Helin, Wang Jin, Chen Wei, et al. Journal of Bone Oncology,2016,5(2),67.
16 Saint-Martin A, Martínez-Ríos J, Castañeda-Patlán M C, et al. Cancers (Basel),2019,11(6),755.
17 Colwell N, Larion M, Giles A J, et al. Neuro-oncology,2017,19(7),887.
18 Hada M, Sutherland B M. Radiation Research,2006,165,223.
19 Hall E, Giaccia A. Radiobiology for the Radiologist, Lippincott Williams & Wilkins, Philadelphia, PA,USA,2012.
20 Asaithamby A, Hu B, Chen D J. Proceedings of the National Academy of Sciences of USA,2011,108,8293.
21 Sedelnikova O A, Rogakou E P, Panyutin I G, et al. Radiation Research,2002,158,486.
22 Churchill-Davidson I. Frontiers of Radiation Therapy and Oncology,1968,1,1.
23 Horsman M R, Chaplin D J, Overgaard J. Cancer Research,1990,50,7430.
24 Hoskin P J, Rojas A M, Bentzen S M, et al. Journal of Clinical Oncology,2010,28,4912.
25 Janssens G O, Rademakers S E, Terhaard C H, et al. Journal of Clinical Oncology,2012,30,1777.
26 Grogan M, Thomas G M, Melamed I, et al. Cancer,1999,86,1528.
27 Overgaard J, Sand Hansen H, Overgaard M, et al. Radiotherapy and Oncology,1998,46,135.
28 Rockwell S. International Journal of Radiation Oncology, Biology, Phy-sics,1985,11,97.
29 Siemann D W, Macler L M. International Journal of Radiation Oncology, Biology, Physics,1986,12,1295.
30 Zannella V E, Dal Pra A, Muaddi H, et al. Clinical Cancer Research,2013,19,6741.
31 Zhang P, Li H, Tan X, et al. Cancer Epidemiol,2013,37,201.
32 Adams G E, Cooke M S. International Journal of Radiation Biology,1969,15,457.
33 Adams G E, Flockhart I R, Smithen C E, et al. Radiation Research,1976,67,9.
34 Urtasun R, Band P, Chapman J D, et al. New England Journal of Medicine,1976,294(25),1364.
35 Overgaard J. Oncology Research,1994,6,509.
36 Overgaard J, Sand Hansen H, Andersen A P, et al. International Journal of Radiation Oncology, Biology, Physics,1989,16,10658.
37 Dische S, Machin D, Chassagne D. Radiotherapy and Oncology,1993,26,93.
38 Lee D J, Cosmatos D, Marcial V A, et al. International Journal of Radiation Oncology, Biology, Physics,1995,32,567.
39 Dobrowsky W, Huigol N G, Jayatilake R S, et al. Radiotherapy and Oncology,2007,82,24.
40 Karasawa K, Sunamura M, Okamoto A, et al. Radiotherapy and Oncology,2008,87,326.
41 Wilson W R, Hay M P. Nature Reviews Cancer,2011,11,393.
42 Rockwell S. International Journal of Cancer,1986,38,229.
43 Rauth A M, McClelland R A, Michaels H B, et al. International Journal of Radiation Oncology, Biology, Physics,1984,10,1323.
44 Sutherland R M, Keng P, Conroy P J, et al. International Journal of Radiation Oncology, Biology, Physics,1982,8,745.
45 Meng F, Evans J W, Bhupathi D, et al. Molecular Cancer Therapeutics,2012,11,740.
46 McKeown S R, Cowen R L, Williams K J. Journal of Clinical Oncology,2007,19,427.
47 Horsman M R, Overgaard J. Journal of Clinical Oncology,2007,19,418.
48 Roti J L. International Journal of Hyperthermia,2004,20,109.
49 Gerweck L E, Nygaard T G, Burlett M. Cancer Research,1979,39,966.
50 Yasaka K, Akai H, Mackin D, et al. Medicine,2017,96(21),e6993.
51 李强.中国医疗设备,2010,25(5),121.
52 Brown L C, Lester R A, Grams M P, et al. Sarcoma,2014,2014,1.
53 Mehta N, Selch M, Wang P C, et al. Sarcoma,2013,2013,1.
54 Frisch S, Timmermann B. Clinical Oncology, 2017,29(8),500.
55 陆蕴松,金燕,刘光耀,等.中国实验诊断学,2009,13(4),464.
56 Osama M, Brock S, Janapriya S, et al. Cancers,2017,9(12),66.
57 Kamada T. Journal of Clinical Oncology,2002,22(22),4466.
58 Imai R, Kamada T. Cancer,2012,118(18),4555.
[1] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[2] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[3] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[4] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[5] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[6] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[7] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[8] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[9] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[10] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[11] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[12] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[13] 张贤琳, 王晓琳, 马建威, 李宝娥, 李海鹏, 刘世敏, 梁春永, 王洪水. 钛表面微弧氧化结构和成分对其润湿性的影响[J]. 材料导报, 2019, 33(24): 4035-4039.
[14] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[15] 马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed