Advances in Clean Extraction of Nickel,Cobalt and Lithium to Produce Strategic Metals for New Energy Industry
DONG Bo1, TIAN Qinghua1,2,*, XU Zhipeng1,2, LI Dong1,2, WANG Qing’ao1, GUO Xueyi1,2,*
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China 2 Research Institute of Resource Recycling, Central South University, Changsha 410083, China
Abstract: As the beginning of the new energy vehicle industry chain, nickel, cobalt, and lithium resource extraction determines its development lifeline. However, the primary mineral resources of nickel and cobalt in China are seriously lacking, and with the exhaustion of nickel sulfide ore, fo-reign laterite nickel ore has become the main raw material for nickel and cobalt extraction. At present, reduction sulfidation smelting and high-pressure acid leaching are the two main processes for producing battery grade nickel sulfate from laterite nickel ore. They have their own advantages and disadvantages. However, the parallel development of the two processes can increase the certainty of nickel sulfate supply and meet the huge demand for nickel and cobalt in the new energy field. Lithium resources are rich, but the endowment is not good, 80% lithium occurs in salt lake brine, and there is a long-term dependence on imported lithium ore. Among the existing lithium extraction technologies from salt lakes, the new lithium extraction process formed by the integration and coupling of nanofiltration, reverse osmosis, electrodialysis and adsorption has been verified by industrialization in several salt lakes and has broad prospects for popularization and application. In addition, the research and development of the new synergistic extraction system (TBP/P507-FeCl3) has basically solved the problems existing in the original extraction system, which is expected to be industrialized and applied. The rapid development of the new energy vehicle industry has led to an exponential increase in the output of retired batteries, and recycled metals are expected to become an important supplement to raw ore metal resources. However, due to a wide variety of lithium cathode materials, the current recovery system is not perfect. In the process of deep recovery and treatment of cathode materials, an acid-base system is used in the leaching system, which is easily causes secondary pollution. Therefore, a new leaching system should be further developed to find a mild and practical leaching method. In summary, energy metal extraction should be oriented by products, and the whole life cycle technology system from resources to materials to battery application and recycling should be constructed. The resources in short supply should be controlled by advanced technology, and the sustainable development of our new energy industry should be guaranteed.
董波, 田庆华, 许志鹏, 李栋, 王青骜, 郭学益. 新能源战略金属镍钴锂资源清洁提取研究进展[J]. 材料导报, 2023, 37(22): 22090071-15.
DONG Bo, TIAN Qinghua, XU Zhipeng, LI Dong, WANG Qing’ao, GUO Xueyi. Advances in Clean Extraction of Nickel,Cobalt and Lithium to Produce Strategic Metals for New Energy Industry. Materials Reports, 2023, 37(22): 22090071-15.
1 Yu, D L, Yuan Z Z, Li X F. Chemical Engineering Science, 2023, 270, 118512. 2 Wang F M, Marcuson S, Xu M Q, et al. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2023, 54(5), 2758. 3 Kwon N A, Lee J W. Materials Chemistry and Physics, 2023, 307, 128177. 4 Baek M, Kim J, Jeong K, et al. Nature Communications, 2023, 14(1), 1296. 5 Qiao D H, Dai T, Ma Y L, et al. Waste Management, 2023, 163, 122. 6 Gao G L. The research on recycling of cathode materials for spent lithiu-mion batteries by leaching with organic acid reducing systems. Ph. D. Thesis, Shanghai University, China, 2020 (in Chinese). 高桂兰. 有机酸还原性体系浸出回收废弃锂离子电池正极材料的研究. 博士学位论文, 上海大学, 2020. 7 Li W H. Study on the construction of new energy automobile industry chain. Master's Thesis, Zhengzhou University, China, 2012 (in Chinese). 李文辉. 新能源汽车产业链构建研究. 硕士学位论文, 郑州大学, 2012. 8 Wang S F. The research of the optimization of china's new energy vehicles industry chain. Master's Thesis, Donghua University, China, 2015 (in Chinese). 汪淑芳. 中国新能源汽车产业链优化研究. 硕士学位论文, 东华大学, 2015. 9 Yu Z B. Commercial Vehicle, 2015(6), 23(in Chinese). 于占波. 商用汽车, 2015(6), 23. 10 Pan W, Li Y K, Li Z B. Automobile & Parts, 2019(15), 34(in Chinese). 潘伟, 黎宇科, 李震彪. 汽车与配件, 2019(15), 34. 11 Ma Q, Zheng H J. Shanghai Auto, 2022(4), 1 (in Chinese). 马琼, 郑海军. 上海汽车, 2022(4), 1. 12 Wang X M. Advanced Materials Industry, 2021(3), 50(in Chinese). 王晓明. 新材料产业, 2021(3), 50. 13 Zhong C F, Liu J, Lv B, et al. Energy of China, 2018, 40(10), 12(in Chinese). 钟财富, 刘坚, 吕斌, 等. 中国能源, 2018, 40(10), 12. 14 Yang J F, Pan X. Nonferrous Metals (Extractive Metallurgy), 2021(6), 37(in Chinese). 杨俊峰, 潘寻. 有色金属(冶炼部分), 2021(6), 37. 15 Mudd G M. Ore Geology Reviews, 2010, 38(1-2), 9. 16 Ma B Y, Wu H, Gao Z. Refractories & Lime, 2022, 47(1), 35(in Chinese). 马北越, 吴桦, 高陟. 耐火与石灰, 2022, 47(1), 35. 17 Li X M, Shen M, Wang C, et al. Materials Reports, 2017, 31(5), 100(in Chinese). 李小明, 沈苗, 王翀, 等. 材料导报, 2017, 31(5), 100. 18 Stankovi S, Stopi S, Soki M, et al. Metallurgical and Materials Engineering, 2020, 26(2), 199. 19 Chandra M, Yu D, Tian Q, et al. Mineral Processing and Extractive Metallurgy Review, 2021, 43(6), 679. 20 Dehaine Q, Tijsseling L T, Glass H J, et al. Minerals Engineering, 2021, 160, 106656. 21 Mudd, G M, Weng Z, Jowitt S M, et al. Ore Geology Reviews, 2013, 55, 87. 22 Jiang S H, Liu S S, Wang T G, et al. Assessment report for lithium, cobalt, nickel, tin, and potash reserves in the world (2021). Research Center for Strategy of Global Mineral Resources, China Geological Survey, Beijing, China, 2021, pp. 1(in Chinese). 江思宏, 刘书生, 王天刚, 等. 全球锂、钴、镍、锡、钾盐矿产资源储量评估报告(2021). 中国地质调查局全球矿产资源战略研究中心, 北京, 2021, pp. 1. 23 Qu T, Gu X P, Shi L, et al. Materials Reports, 2020, 34(S1), 261(in Chinese). 曲涛, 谷旭鹏, 施磊, 等. 材料导报, 2020, 34(S1), 261. 24 Zhu D Q, Cui Y, Hapugoda S, et al. Transactions of nonferrous metals society of China, 2012, 22(4), 907. 25 Thorne R, Herrington R, Roberts S. Mineralium Deposita, 2009, 44(5), 581. 26 Thorne R L, Roberts S, Herrington R. Geology, 2012, 40(4), 331. 27 Goodall G. Nickel recovery from reject laterite. Master's Thesis, McGill University, Canada, 2007. 28 Burkin B R. Extractive metallurgy of nickel, Hoboken: John Wiley & Sons, US, 1987, pp. 30. 29 Valix M, Cheung W H. Minerals Engineering, 2002, 15(8), 607. 30 Ran Q S, Zhu S Z. Mining Engineering, 2011, 9(2), 6 (in Chinese). 冉启胜, 朱淑桢. 矿业工程, 2011, 9(2), 6. 31 Lv X M. Research on the foundamentals and process for ferronickel production from laterite based on semi-mloten smelting. Ph. D. Thesis, Chongqing University, China, 2019 (in Chinese). 吕学明. 红土镍矿半熔融态冶炼镍铁的理论基础及工艺研究. 博士学位论文, 重庆大学, 2019. 32 Ye Z, Wei S, Rui X, et al. Journal of Cleaner Production, 2020, 285, 124905. 33 Meshram P, Pandey B D, Mankhand T R. Hydrometallurgy, 2014, 150, 192. 34 Xu N C, Shi D D, Li S X, et al. Materials Reports, 2017, 31(17), 116(in Chinese). 许乃才, 史丹丹, 黎四霞, 等. 材料导报, 2017, 31(17), 116. 35 Stober I, Zhong J, Bucher K. Swiss Journal of Geosciences, 2023, 116(1), 5. 36 Yang H P, Liu L, Ding G F. Conservation and Utilization of Mineral Resources, 2019, 39(5), 26(in Chinese). 杨卉芃, 柳林, 丁国峰. 矿产保护与利用, 2019, 39(5), 26. 37 An J W, Dong J K, Tran K T, et al. Hydrometallurgy, 2012, 117-118, 64. 38 Li F F, Li Z. Jiangxi Chemical Industry, 2016 (6), 11(in Chinese). 李芳芳, 李忠. 江西化工, 2016(6), 11. 39 Song P S. Journal of Salt Lake Research, 2000 (1), 1(in Chinese). 宋彭生. 盐湖研究, 2000 (1), 1. 40 Zheng M P, Hou X H. Science & Technology Review, 2017, 35(12), 11(in Chinese). 郑绵平, 侯献华. 科技导报, 2017, 35(12), 11. 41 Zhou Y Y. Resources & Industries, 2019, 21(3), 46(in Chinese). 周园园. 资源与产业, 2019, 21(3), 46. 42 Su H. Study on the lithium recovery from salt lake brines containing high magnesium concentration using multiple component synergistic solvent extraction system. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2022 (in Chinese). 苏慧. 多组分协同溶剂萃取体系应用于高镁盐湖卤水提锂的研究. 博士学位论文, 中国科学院大学, 2022. 43 Cui J Y, Tan Q Y, Liu L L, et al. Environmental Science & Technology, 2023, 57(23), 8559. 44 Jiang Y Z, Wang Y, Li S Z, et al. Chemical Industry and Engineering, 2021, 38(6), 23(in Chinese). 江友周, 王宜, 李淑珍, 等. 化学工业与工程, 2021, 38(6), 23. 45 Zan W Y, Ma B Y, Liu G Q. Material Research and Application, 2021, 15(3), 297(in Chinese). 昝文宇, 马北越, 刘国强. 材料研究与应用, 2021, 15(3), 297. 46 Zeng X L, Li J H, Singh N. Critical Reviews in Environmental Science and Technology, 2014, 44(10), 1129. 47 LI D. Fundamental and technological study on treatment of low-grade nickel laterite by hydrometallurgical processes. Ph. D. Thesis, Central South University, China, 2011 (in Chinese). 李栋. 低品位镍红土矿湿法冶金提取基础理论及工艺研究. 博士学位论文, 中南大学, 2011. 48 Liu W R, Li X H, Hu Q Y, et al. Transactions of Nonferrous Metals Society of China, 2010, 20, s82. 49 Hallberg K B, Grail B M, Plessis C, et al. Minerals Engineering, 2011, 24(7), 620. 50 Zhang P Y. Applied basic research on the new process for the selective leaching of Ni and Co from laterite ore by leaching-hydrolysis coupling reactions. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2016. 张培育. 红土镍矿酸浸-水解耦合新工艺选择性浸出镍钴应用基础研究. 博士学位论文, 中国科学院大学, 2016. 51 Sun Y J. China Nonferrous Metallurgy, 1977 (3), 10(in Chinese). 孙燕娟. 有色冶炼, 1977(3), 10. 52 Ma B Z. Study on coal-based non-melt metallization reduction technology and basic theory of magnesia nickel oxide ore. Ph. D. Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese). 马保中. 镁质氧化镍矿煤基非熔融金属化还原工艺及基础理论研究. 博士学位论文, 昆明理工大学, 2017. 53 Wang S, Jiang Y, Zheng F Q, et al. China Metallurgy, 2021, 31(10), 1 (in Chinese). 王帅, 姜颖, 郑富强, 等. 中国冶金, 2021, 31(10), 1. 54 Khoo J Z, Haque N, Bhattacharya S. International Journal of Mineral Processing, 2017, 161, 83. 55 Takeda O, Lu X, Miki T, et al. Resources, Conservation and Recycling, 2018, 133, 362. 56 Ma M S. China Nonferrous Metallurgy, 2013, 42(5), 57(in Chinese). 马明生. 中国有色冶金, 2013, 42(5), 57. 57 Pan L T, Luo H J, Xiao Q, et al. In: 2016 (the first) National Ferroalloy Hot and Difficult Technical Exchange Conference. Jining, Inner Mongolia, China, 2016, pp. 112(in Chinese). 潘料庭, 罗会键, 肖琦, 等. 2016(首届)全国铁合金热点难点技术交流会. 中国内蒙古集宁, 2016, pp. 112. 58 Liu P, Li B, Cheng S, et al. Applied Thermal Engineering, 2016, 109, 542. 59 尉克俭, 马明生, 卢笠渔, 等. 中国专利, CN201210206679. 0, 2012. 60 Gao Y M, Wang S B, Hong C, et al. International Journal of Minerals Metallurgy and Materials, 2014, 21(4), 353. 61 李光辉, 罗骏, 姜涛, 等. 中国专利, CN201711388806. 2, 2017. 62 王亲猛, 陈远林, 郭学益, 等. 中国专利, CN202010533112. 9, 2020. 63 于大伟, 郭学益, 甘向栋, 等. 中国专利, CN202011210440. 1, 2020. 64 Tao G C, Xiao F, Jiang W, et al. Nonferrous Metals (Smelting Section), 2014, (8), 51(in Chinese). 陶高驰, 肖峰, 蒋伟, 等. 有色金属(冶炼部分), 2014(8), 51. 65 Li G, Shi T, Rao M, et al. Minerals Engineering, 2012, 32, 19. 66 Tsuji H, Tachino N. ISIJ international, 2012, 52(10), 1724. 67 Liu Z G, Sun T C, Wang X P. Transactions of Nonferrous Metals Society of China, 2017, 27(3), 594(in Chinese). 刘志国, 孙体昌, 王晓平. 中国有色金属学报, 2017, 27(3), 594. 68 Lu C Y, Lu X G, Zou X L, et al. Chinese Journal of Nature, 2015, 37(4), 269(in Chinese). 路长远, 鲁雄刚, 邹星礼, 等. 自然杂志, 2015, 37(4), 269. 69 Tian Q H, Li Z C, Wang Q M, et al. Transactions of Nonferrous Metals Society of China, https:∥kns. cnki. net/kcms/detail/43. 1238. tg. 20220901. 0851. 003. html (in Chinese). 田庆华, 李中臣, 王亲猛, 等. 中国有色金属学报, https:∥kns. cnki. net/kcms/detail/43. 1238. tg. 20220901. 0851. 003. html. 70 Liu Y F, Chen B. Mining and Metallurgy, 2014, 23(4), 70(in Chinese). 刘云峰, 陈滨. 矿冶, 2014, 23(4), 70. 71 王亲猛, 李中臣, 郭学益, 等. 中国专利, CN202111522791. 0, 2021. 72 Yang Z Y, Zhang W, Shen Y F, et al. China Nonferrous Metallurgy, 2020, 49(4), 1 (in Chinese). 杨泽宇, 张文, 申亚芳, 等. 中国有色冶金, 2020, 49(4), 1. 73 Meshram P, Abhilash, Pandey B D. Mineral Processing and Extractive Metallurgy Review, 2019, 40(3), 157. 74 nal M A R, Topkaya Y A. Hydrometallurgy, 2014, 142, 98. 75 Georgiou D, Papangelakis V G. Hydrometallurgy, 1998, 49(1), 23. 76 Papangelakis G. Hydrometallurgy, 2009, 100(1-2), 35. 77 Guo X Y, Shi W T, Li D, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(1), 191. 78 Mcdonald R G, Whittington B I. Hydrometallurgy, 2008, 91(1-4), 35. 79 Adams M, Van D M D, Czerny C, et al. In: International Laterite Nickel Symposium. TMS Warrendale, 2004, pp. 193. 80 田庆华, 董波, 郭学益, 等. 中国专利, CN202111641571. X, 2021. 81 Tian Q H, Dong B, Guo X Y, et al. Minerals Engineering, 2021, 17, 107212. 82 田庆华, 董波, 郭学益, 等. 中国专利, CN202111638469. 4, 2021. 83 田庆华, 董波, 郭学益, 等. 中国专利, CN202111544544. 0, 2021. 84 Ma B, Wang C, Yang W, et al. Minerals Engineering, 2013, 45, 151. 85 田庆华, 董波, 郭学益, 等. 中国专利, CN202111546849. 5, 2021. 86 Zhang Z F, Chen S F, Li Y C, et al. Multipurpose Utilization of Mineral Resources, 2022(2), 31(in Chinese). 张振芳, 陈秀法, 李仰春, 等. 矿产综合利用, 2022 (2), 31. 87 Yu Z, Wu Q, Ding T, et al. Inorganic Chemicals Industry, 2022, 54(10), 1. 乜贞, 伍倩, 丁涛, 等. 无机盐工业, 2022, 54(10), 1. 88 Ma Z. Inorganic Chemicals Industry, 2022, 54(10), 22. 马珍. 无机盐工业, 2022, 54(10), 22. 89 Foo Z H, Thomas J B, Heath S M, et al. Environmental Science & Technology, 2023, 57(39), 14747. 90 Su H, Zhu Z W, Wang L N, et al. Materials Reports, 2019, 33(13), 2119(in Chinese). 苏慧, 朱兆武, 王丽娜, 等. 材料导报, 2019, 33(13), 2119. 91 Liu Y H, Deng T L. World Science and Technology Research and Development, 2006, 28(5), 69(in Chinese). 刘元会, 邓天龙. 世界科技研究与发展, 2006, 28(5), 69. 92 Choubey P K, Chung K S, Kim M S, et al. Minerals Engineering, 2017, 110, 104. 93 Zhang Y, Hu Y, Sun N, et al. Hydrometallurgy, 2019, 187, 125. 94 Zhang Y, Xu R, Wang L, et al. Minerals Engineering, 2022, 180, 107468. 95 郑绵平, 郭珍旭, 张永生, 等. 中国专利, CN99105828. 3, 2000. 96 Zhao C L, Sun Z, Zheng X H, et al. The Chinese Journal of Process Engineering, 2018, 18(1), 20(in Chinese). 赵春龙, 孙峙, 郑晓洪, 等. 过程工程学报, 2018, 18(1), 20. 97 Wu Q, Yu J, Bu L, et al. Solar Energy, 2022, 244, 104. 98 杨建元, 夏康明. 中国专利, CN200510085832. 9, 2006. 99 Zheng M P, Zhang Y S, Liu X F, et al. Acta Geologica Sinica, 2016, 90(9), 2123(in Chinese). 郑绵平, 张永生, 刘喜方, 等. 地质学报, 2016, 90(9), 2123. 100 Song J F, Nghiem L D, Li X M, et al. Environmental Science Water Research & Technology, 2017, 3(4), 593. 101 马培华, 邓小川, 温现民. 中国专利, CN200310122238. 3, 2005. 102 Ding T, Zheng M, Lin Y. Acs Omega, 2022, 7(13), 11430. 103 Shi C L. Study on the application of ionic liquid system for extraction of lithium from salt lake brine. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2017. 石成龙. 离子液体体系用于盐湖卤水中提取锂的研究. 博士学位论文, 中国科学院大学, 2017. 104 Li H F, Li L J, Shi D, et al. Journal of Salt Lake Research, 2015, 23(2), 51(in Chinese). 李慧芳, 李丽娟, 时东, 等. 盐湖研究, 2015, 23(2), 51. 105 Shi C L, Song G X, Qin Y R, et al. Chemical Engineering(China), 2020, 48(2), 16(in Chinese). 石成龙, 宋桂秀, 秦亚茹, 等. 化学工程, 2020, 48(2), 16. 106 李传波, 闫东豪, 贾峰, 等. 中国专利, CN202110062197. 1, 2021. 107 Guo Z Y, Ji Z Y, C H Y, et al. Chemical Industry and Engineering Progress, 2020, 39(6), 2294(in Chinese). 郭志远, 纪志永, 陈华艳, 等. 化工进展, 2020, 39(6), 2294. 108 Liu G, Zhao Z, Ghahreman A. Hydrometallurgy, 2019, 187, 81. 109 张治奎, 赵忠伟, 何利华. 中国实用新型专利, CN202021954468. 1, 2020. 110 Gao S, Liu W, Fu D, et al. New Carbon Materials, 2022, 37(3), 435. 111 Lai X, Huang Y, Gu H, et al. Energy Storage Materials, 2021, 40, 96. 112 Georgi-Maschler T, Friedrich B, Weyhe R, et al. Journal of Power Sources, 2012, 207, 173. 113 Zhang G, Yuan X, He Y, et al. Journal of Hazardous Materials, 2021, 406, 124332. 114 Hu J, Zhang J, Li H, et al. Journal of Power Sources, 2017, 351, 192. 115 Li J, Wang G, Xu Z. Journal of Hazardous Materials, 2016, 302, 97. 116 于大伟, 黄柱, 田庆华, 等. 中国专利, CN202011480154. 7, 2021. 117 Xiao J, Li J, Xu Z. Environmental Science & Technology, 2017, 51(20), 11960. 118 Xiao J, Li J, Xu Z. Journal of Hazardous Materials, 2017, 338, 124. 119 Wang R, Lin Y, Wu S. Hydrometallurgy, 2009, 99(3-4), 194. 120 Kang J, Sohn J, Chang H, et al. Advanced Powder Technology, 2010, 21(2), 175. 121 Lee C K, Rhee K. Hydrometallurgy, 2003, 68(1-3), 5. 122 Chen X, Ma H, Luo C, et al. Journal of Hazardous Materials, 2017, 326, 77. 123 He L, Sun S, Song X, et al. Waste Management, 2017, 64, 171. 124 Guan J, Li Y, Guo Y, et al. Acs Sustainable Chemistry & Engineering, 2017, 5(1), 1026. 125 Tanong K, Coudert L, Mercier G, et al. Journal of Environmental Management, 2016, 181, 95. 126 Gratz E, Sa Q, Apelian D, et al. Journal of Power Sources, 2014, 262, 255. 127 Pagnanelli F, Moscardini E, Granata G, et al. Journal of Industrial and Engineering Chemistry, 2014, 20(5), 3201. 128 Meshram P, Pandey B D, Mankhand T R. Chemical Engineering Journal, 2015, 281, 418. 129 Nayaka G P, Pai K V, Santhosh G, et al. Journal of Environmental Chemical Engineering, 2016, 4(2), 2378. 130 Li L, Bian Y, Zhang X, et al. Journal of Power Sources, 2018, 377, 70. 131 Chen X, Luo C, Zhang J, et al. Acs Sustainable Chemistry & Enginee-ring, 2015, 3(12), 3104. 132 Li L, Bian Y F, Zhang X X, et al. Waste Management, 2018, 71, 362. 133 Fu Y, He Y, Qu L, et al. Waste Management, 2019, 88, 191. 134 Gao W, Zhang X, Zheng X, et al. Environmental Science & Technology, 2017, 51(3), 1662. 135 Zhuang L, Sun C, Zhou T, et al. Waste Management, 2019, 85, 175. 136 Hu C, Guo J, Wen J, et al. Journal of Materials Science & Technology, 2013, 29(3), 215. 137 Zheng X, Gao W, Zhang X, et al. Waste Management, 2017, 60, 680. 138 Lv W, Wang Z, Cao H, et al. Acs Sustainable Chemistry & Engineering, 2018, 6(2), 1504. 139 Zhang K, Li B, Wu Y, et al. Waste Management, 2017, 64, 236. 140 Li J, Yang X, Yin Z. Journal of Environmental Chemical Engineering, 2018, 6(5), 6407. 141 Tanong K, Tran L, Mercier G, et al. Journal of Cleaner Production, 2017, 148, 233. 142 Virolainen S, Fini M F, Laitinen A, et al. Separation and Purification Technology, 2017, 179, 274. 143 Chen X, Kang D, Cao L, et al. Separation and Purification Technology, 2019, 210, 690. 144 Freitas M, Garcia E M. Journal of Power Sources, 2007, 171(2), 953. 145 Nishide H, Deguchi J, Tsuchida E. Chemistry Letters, 1976, 5(2), 169. 146 Donato L, Drioli E. Frontiers of Chemical Science and Engineering, 2021, 15(4), 775. 147 Li Z, He G, Zhao G, et al. Separation and Purification Technology, 2021, 277, 119519. 148 Wang H, Huang K, Zhang Y, et al. Acs Sustainable Chemistry & Engineering, 2017, 5(12), 11489.