Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22090071-15    https://doi.org/10.11896/cldb.22090071
  金属与金属基复合材料 |
新能源战略金属镍钴锂资源清洁提取研究进展
董波1, 田庆华1,2,*, 许志鹏1,2, 李栋1,2, 王青骜1, 郭学益1,2,*
1 中南大学冶金与环境学院,长沙 410083
2 中南大学资源循环研究院,长沙 410083
Advances in Clean Extraction of Nickel,Cobalt and Lithium to Produce Strategic Metals for New Energy Industry
DONG Bo1, TIAN Qinghua1,2,*, XU Zhipeng1,2, LI Dong1,2, WANG Qing’ao1, GUO Xueyi1,2,*
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
2 Research Institute of Resource Recycling, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 15556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍钴锂资源提取作为新能源汽车产业链开端环节,决定着其发展命脉。然而我国镍、钴原生矿产资源严重匮乏,且随着硫化镍矿日趋枯竭,国外红土镍矿已成为镍钴主要提取原料。火法高冰镍及湿法高压酸浸作为目前红土镍矿生产电池级硫酸镍的两大主流工艺,各有利弊,两大工艺的并行发展能够为硫酸镍的供应增加更多确定性,进而满足新能源领域对镍钴的庞大需求。我国锂资源丰富但赋存状态不佳,80%锂赋存于盐湖卤水中,长期依赖进口锂矿石。现行盐湖提锂技术中,纳滤法、反渗透、电渗析及吸附法等技术集成耦合所形成的新型提锂工艺,已被多个盐湖的产业化验证,具有广阔的推广应用前景。此外,新型协萃体系TBP/P507-FeCl3的研发,基本解决了原萃取体系存在的问题,有望产业化推广应用。新能源汽车行业的蓬勃发展导致退役电池量呈指数上升,再生金属有望成为原矿金属资源的重要补充,但由于锂电正极材料种类繁多,目前回收系统并不完善。在正极材料的深度回收和处理过程中,浸出体系多采用酸碱体系,易造成二次污染。因此,应进一步研发新型浸出体系,以找到一种温和实用的浸出方法。综上,能源金属提取应以产品为导向,构建从资源到材料到电池应用及回收全生命周期技术体系,以先进技术控制紧缺资源,保障我国新能源行业可持续发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董波
田庆华
许志鹏
李栋
王青骜
郭学益
关键词:  新能源        清洁提取    
Abstract: As the beginning of the new energy vehicle industry chain, nickel, cobalt, and lithium resource extraction determines its development lifeline. However, the primary mineral resources of nickel and cobalt in China are seriously lacking, and with the exhaustion of nickel sulfide ore, fo-reign laterite nickel ore has become the main raw material for nickel and cobalt extraction. At present, reduction sulfidation smelting and high-pressure acid leaching are the two main processes for producing battery grade nickel sulfate from laterite nickel ore. They have their own advantages and disadvantages. However, the parallel development of the two processes can increase the certainty of nickel sulfate supply and meet the huge demand for nickel and cobalt in the new energy field. Lithium resources are rich, but the endowment is not good, 80% lithium occurs in salt lake brine, and there is a long-term dependence on imported lithium ore. Among the existing lithium extraction technologies from salt lakes, the new lithium extraction process formed by the integration and coupling of nanofiltration, reverse osmosis, electrodialysis and adsorption has been verified by industrialization in several salt lakes and has broad prospects for popularization and application. In addition, the research and development of the new synergistic extraction system (TBP/P507-FeCl3) has basically solved the problems existing in the original extraction system, which is expected to be industrialized and applied. The rapid development of the new energy vehicle industry has led to an exponential increase in the output of retired batteries, and recycled metals are expected to become an important supplement to raw ore metal resources. However, due to a wide variety of lithium cathode materials, the current recovery system is not perfect. In the process of deep recovery and treatment of cathode materials, an acid-base system is used in the leaching system, which is easily causes secondary pollution. Therefore, a new leaching system should be further developed to find a mild and practical leaching method. In summary, energy metal extraction should be oriented by products, and the whole life cycle technology system from resources to materials to battery application and recycling should be constructed. The resources in short supply should be controlled by advanced technology, and the sustainable development of our new energy industry should be guaranteed.
Key words:  new energy    nickel    cobalt    lithium    clean extraction
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TF80  
基金资助: 国家重点研发计划(2019YFC1907402;2018YFC1902501);国家自然科学基金(52074363;52104355;51922108;U20A20273)
通讯作者:  * 田庆华,中南大学冶金与环境学院教授、博士研究生导师,国家优秀青年科学基金获得者。2004年中南大学冶金工程专业本科毕业,2007年中南大学有色金属冶金专业硕士毕业,2009年中南大学有色金属冶金专业博士毕业后留校工作至今。目前主要从事复杂资源高效分离、二次资源循环利用、高纯金属及先进储能材料制备等方面的研究工作。编著出版学术专著1部,参编论著2部;发表论文100余篇,SCI、EI收录96篇次;申请国家专利过百项,获授权国家发明专利90项;获国家科技进步二等奖2项、省部级科技进步一等奖7项。
郭学益,中南大学冶金与环境学院教授、博士研究生导师,教育部“长江学者”特聘教授,国务院政府特殊津贴获得者,国务院学科评议组成员,国家“百千万人才工程”入选者,国家有突出贡献的中青年专家。1989年中南工业大学(现中南大学)有色金属冶金专业本科毕业,1992年中南工业大学(现中南大学)有色金属冶金专业硕士毕业,1995年中南工业大学(现中南大学)有色金属冶金专业博士毕业后留校工作至今。目前主要从事有色金属资源循环及先进材料制备等方面的研究工作。出版学术专著9部,发表SCI、EI等论文200余篇,授权国家发明专利100余项,获国家科技进步二等奖3项、省部级科技进步一等奖9项。qinghua@csu.edu.cn;xyguo@csu.edu.cn   
作者简介:  董波,2016年6月、2019年6月分别于辽宁科技大学和中南大学获得工学学士学位和硕士学位。现为中南大学冶金与环境学院博士研究生,在郭学益教授及田庆华教授的指导下进行研究,发表学术论文8篇,SCI收录5篇。目前主要研究领域为能源金属清洁提取。
引用本文:    
董波, 田庆华, 许志鹏, 李栋, 王青骜, 郭学益. 新能源战略金属镍钴锂资源清洁提取研究进展[J]. 材料导报, 2023, 37(22): 22090071-15.
DONG Bo, TIAN Qinghua, XU Zhipeng, LI Dong, WANG Qing’ao, GUO Xueyi. Advances in Clean Extraction of Nickel,Cobalt and Lithium to Produce Strategic Metals for New Energy Industry. Materials Reports, 2023, 37(22): 22090071-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090071  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22090071
1 Yu, D L, Yuan Z Z, Li X F. Chemical Engineering Science, 2023, 270, 118512.
2 Wang F M, Marcuson S, Xu M Q, et al. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2023, 54(5), 2758.
3 Kwon N A, Lee J W. Materials Chemistry and Physics, 2023, 307, 128177.
4 Baek M, Kim J, Jeong K, et al. Nature Communications, 2023, 14(1), 1296.
5 Qiao D H, Dai T, Ma Y L, et al. Waste Management, 2023, 163, 122.
6 Gao G L. The research on recycling of cathode materials for spent lithiu-mion batteries by leaching with organic acid reducing systems. Ph. D. Thesis, Shanghai University, China, 2020 (in Chinese).
高桂兰. 有机酸还原性体系浸出回收废弃锂离子电池正极材料的研究. 博士学位论文, 上海大学, 2020.
7 Li W H. Study on the construction of new energy automobile industry chain. Master's Thesis, Zhengzhou University, China, 2012 (in Chinese).
李文辉. 新能源汽车产业链构建研究. 硕士学位论文, 郑州大学, 2012.
8 Wang S F. The research of the optimization of china's new energy vehicles industry chain. Master's Thesis, Donghua University, China, 2015 (in Chinese).
汪淑芳. 中国新能源汽车产业链优化研究. 硕士学位论文, 东华大学, 2015.
9 Yu Z B. Commercial Vehicle, 2015(6), 23(in Chinese).
于占波. 商用汽车, 2015(6), 23.
10 Pan W, Li Y K, Li Z B. Automobile & Parts, 2019(15), 34(in Chinese).
潘伟, 黎宇科, 李震彪. 汽车与配件, 2019(15), 34.
11 Ma Q, Zheng H J. Shanghai Auto, 2022(4), 1 (in Chinese).
马琼, 郑海军. 上海汽车, 2022(4), 1.
12 Wang X M. Advanced Materials Industry, 2021(3), 50(in Chinese).
王晓明. 新材料产业, 2021(3), 50.
13 Zhong C F, Liu J, Lv B, et al. Energy of China, 2018, 40(10), 12(in Chinese).
钟财富, 刘坚, 吕斌, 等. 中国能源, 2018, 40(10), 12.
14 Yang J F, Pan X. Nonferrous Metals (Extractive Metallurgy), 2021(6), 37(in Chinese).
杨俊峰, 潘寻. 有色金属(冶炼部分), 2021(6), 37.
15 Mudd G M. Ore Geology Reviews, 2010, 38(1-2), 9.
16 Ma B Y, Wu H, Gao Z. Refractories & Lime, 2022, 47(1), 35(in Chinese).
马北越, 吴桦, 高陟. 耐火与石灰, 2022, 47(1), 35.
17 Li X M, Shen M, Wang C, et al. Materials Reports, 2017, 31(5), 100(in Chinese).
李小明, 沈苗, 王翀, 等. 材料导报, 2017, 31(5), 100.
18 Stankovi S, Stopi S, Soki M, et al. Metallurgical and Materials Engineering, 2020, 26(2), 199.
19 Chandra M, Yu D, Tian Q, et al. Mineral Processing and Extractive Metallurgy Review, 2021, 43(6), 679.
20 Dehaine Q, Tijsseling L T, Glass H J, et al. Minerals Engineering, 2021, 160, 106656.
21 Mudd, G M, Weng Z, Jowitt S M, et al. Ore Geology Reviews, 2013, 55, 87.
22 Jiang S H, Liu S S, Wang T G, et al. Assessment report for lithium, cobalt, nickel, tin, and potash reserves in the world (2021). Research Center for Strategy of Global Mineral Resources, China Geological Survey, Beijing, China, 2021, pp. 1(in Chinese).
江思宏, 刘书生, 王天刚, 等. 全球锂、钴、镍、锡、钾盐矿产资源储量评估报告(2021). 中国地质调查局全球矿产资源战略研究中心, 北京, 2021, pp. 1.
23 Qu T, Gu X P, Shi L, et al. Materials Reports, 2020, 34(S1), 261(in Chinese).
曲涛, 谷旭鹏, 施磊, 等. 材料导报, 2020, 34(S1), 261.
24 Zhu D Q, Cui Y, Hapugoda S, et al. Transactions of nonferrous metals society of China, 2012, 22(4), 907.
25 Thorne R, Herrington R, Roberts S. Mineralium Deposita, 2009, 44(5), 581.
26 Thorne R L, Roberts S, Herrington R. Geology, 2012, 40(4), 331.
27 Goodall G. Nickel recovery from reject laterite. Master's Thesis, McGill University, Canada, 2007.
28 Burkin B R. Extractive metallurgy of nickel, Hoboken: John Wiley & Sons, US, 1987, pp. 30.
29 Valix M, Cheung W H. Minerals Engineering, 2002, 15(8), 607.
30 Ran Q S, Zhu S Z. Mining Engineering, 2011, 9(2), 6 (in Chinese).
冉启胜, 朱淑桢. 矿业工程, 2011, 9(2), 6.
31 Lv X M. Research on the foundamentals and process for ferronickel production from laterite based on semi-mloten smelting. Ph. D. Thesis, Chongqing University, China, 2019 (in Chinese).
吕学明. 红土镍矿半熔融态冶炼镍铁的理论基础及工艺研究. 博士学位论文, 重庆大学, 2019.
32 Ye Z, Wei S, Rui X, et al. Journal of Cleaner Production, 2020, 285, 124905.
33 Meshram P, Pandey B D, Mankhand T R. Hydrometallurgy, 2014, 150, 192.
34 Xu N C, Shi D D, Li S X, et al. Materials Reports, 2017, 31(17), 116(in Chinese).
许乃才, 史丹丹, 黎四霞, 等. 材料导报, 2017, 31(17), 116.
35 Stober I, Zhong J, Bucher K. Swiss Journal of Geosciences, 2023, 116(1), 5.
36 Yang H P, Liu L, Ding G F. Conservation and Utilization of Mineral Resources, 2019, 39(5), 26(in Chinese).
杨卉芃, 柳林, 丁国峰. 矿产保护与利用, 2019, 39(5), 26.
37 An J W, Dong J K, Tran K T, et al. Hydrometallurgy, 2012, 117-118, 64.
38 Li F F, Li Z. Jiangxi Chemical Industry, 2016 (6), 11(in Chinese).
李芳芳, 李忠. 江西化工, 2016(6), 11.
39 Song P S. Journal of Salt Lake Research, 2000 (1), 1(in Chinese).
宋彭生. 盐湖研究, 2000 (1), 1.
40 Zheng M P, Hou X H. Science & Technology Review, 2017, 35(12), 11(in Chinese).
郑绵平, 侯献华. 科技导报, 2017, 35(12), 11.
41 Zhou Y Y. Resources & Industries, 2019, 21(3), 46(in Chinese).
周园园. 资源与产业, 2019, 21(3), 46.
42 Su H. Study on the lithium recovery from salt lake brines containing high magnesium concentration using multiple component synergistic solvent extraction system. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2022 (in Chinese).
苏慧. 多组分协同溶剂萃取体系应用于高镁盐湖卤水提锂的研究. 博士学位论文, 中国科学院大学, 2022.
43 Cui J Y, Tan Q Y, Liu L L, et al. Environmental Science & Technology, 2023, 57(23), 8559.
44 Jiang Y Z, Wang Y, Li S Z, et al. Chemical Industry and Engineering, 2021, 38(6), 23(in Chinese).
江友周, 王宜, 李淑珍, 等. 化学工业与工程, 2021, 38(6), 23.
45 Zan W Y, Ma B Y, Liu G Q. Material Research and Application, 2021, 15(3), 297(in Chinese).
昝文宇, 马北越, 刘国强. 材料研究与应用, 2021, 15(3), 297.
46 Zeng X L, Li J H, Singh N. Critical Reviews in Environmental Science and Technology, 2014, 44(10), 1129.
47 LI D. Fundamental and technological study on treatment of low-grade nickel laterite by hydrometallurgical processes. Ph. D. Thesis, Central South University, China, 2011 (in Chinese).
李栋. 低品位镍红土矿湿法冶金提取基础理论及工艺研究. 博士学位论文, 中南大学, 2011.
48 Liu W R, Li X H, Hu Q Y, et al. Transactions of Nonferrous Metals Society of China, 2010, 20, s82.
49 Hallberg K B, Grail B M, Plessis C, et al. Minerals Engineering, 2011, 24(7), 620.
50 Zhang P Y. Applied basic research on the new process for the selective leaching of Ni and Co from laterite ore by leaching-hydrolysis coupling reactions. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2016.
张培育. 红土镍矿酸浸-水解耦合新工艺选择性浸出镍钴应用基础研究. 博士学位论文, 中国科学院大学, 2016.
51 Sun Y J. China Nonferrous Metallurgy, 1977 (3), 10(in Chinese).
孙燕娟. 有色冶炼, 1977(3), 10.
52 Ma B Z. Study on coal-based non-melt metallization reduction technology and basic theory of magnesia nickel oxide ore. Ph. D. Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese).
马保中. 镁质氧化镍矿煤基非熔融金属化还原工艺及基础理论研究. 博士学位论文, 昆明理工大学, 2017.
53 Wang S, Jiang Y, Zheng F Q, et al. China Metallurgy, 2021, 31(10), 1 (in Chinese).
王帅, 姜颖, 郑富强, 等. 中国冶金, 2021, 31(10), 1.
54 Khoo J Z, Haque N, Bhattacharya S. International Journal of Mineral Processing, 2017, 161, 83.
55 Takeda O, Lu X, Miki T, et al. Resources, Conservation and Recycling, 2018, 133, 362.
56 Ma M S. China Nonferrous Metallurgy, 2013, 42(5), 57(in Chinese).
马明生. 中国有色冶金, 2013, 42(5), 57.
57 Pan L T, Luo H J, Xiao Q, et al. In: 2016 (the first) National Ferroalloy Hot and Difficult Technical Exchange Conference. Jining, Inner Mongolia, China, 2016, pp. 112(in Chinese).
潘料庭, 罗会键, 肖琦, 等. 2016(首届)全国铁合金热点难点技术交流会. 中国内蒙古集宁, 2016, pp. 112.
58 Liu P, Li B, Cheng S, et al. Applied Thermal Engineering, 2016, 109, 542.
59 尉克俭, 马明生, 卢笠渔, 等. 中国专利, CN201210206679. 0, 2012.
60 Gao Y M, Wang S B, Hong C, et al. International Journal of Minerals Metallurgy and Materials, 2014, 21(4), 353.
61 李光辉, 罗骏, 姜涛, 等. 中国专利, CN201711388806. 2, 2017.
62 王亲猛, 陈远林, 郭学益, 等. 中国专利, CN202010533112. 9, 2020.
63 于大伟, 郭学益, 甘向栋, 等. 中国专利, CN202011210440. 1, 2020.
64 Tao G C, Xiao F, Jiang W, et al. Nonferrous Metals (Smelting Section), 2014, (8), 51(in Chinese).
陶高驰, 肖峰, 蒋伟, 等. 有色金属(冶炼部分), 2014(8), 51.
65 Li G, Shi T, Rao M, et al. Minerals Engineering, 2012, 32, 19.
66 Tsuji H, Tachino N. ISIJ international, 2012, 52(10), 1724.
67 Liu Z G, Sun T C, Wang X P. Transactions of Nonferrous Metals Society of China, 2017, 27(3), 594(in Chinese).
刘志国, 孙体昌, 王晓平. 中国有色金属学报, 2017, 27(3), 594.
68 Lu C Y, Lu X G, Zou X L, et al. Chinese Journal of Nature, 2015, 37(4), 269(in Chinese).
路长远, 鲁雄刚, 邹星礼, 等. 自然杂志, 2015, 37(4), 269.
69 Tian Q H, Li Z C, Wang Q M, et al. Transactions of Nonferrous Metals Society of China, https:∥kns. cnki. net/kcms/detail/43. 1238. tg. 20220901. 0851. 003. html (in Chinese).
田庆华, 李中臣, 王亲猛, 等. 中国有色金属学报, https:∥kns. cnki. net/kcms/detail/43. 1238. tg. 20220901. 0851. 003. html.
70 Liu Y F, Chen B. Mining and Metallurgy, 2014, 23(4), 70(in Chinese).
刘云峰, 陈滨. 矿冶, 2014, 23(4), 70.
71 王亲猛, 李中臣, 郭学益, 等. 中国专利, CN202111522791. 0, 2021.
72 Yang Z Y, Zhang W, Shen Y F, et al. China Nonferrous Metallurgy, 2020, 49(4), 1 (in Chinese).
杨泽宇, 张文, 申亚芳, 等. 中国有色冶金, 2020, 49(4), 1.
73 Meshram P, Abhilash, Pandey B D. Mineral Processing and Extractive Metallurgy Review, 2019, 40(3), 157.
74 nal M A R, Topkaya Y A. Hydrometallurgy, 2014, 142, 98.
75 Georgiou D, Papangelakis V G. Hydrometallurgy, 1998, 49(1), 23.
76 Papangelakis G. Hydrometallurgy, 2009, 100(1-2), 35.
77 Guo X Y, Shi W T, Li D, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(1), 191.
78 Mcdonald R G, Whittington B I. Hydrometallurgy, 2008, 91(1-4), 35.
79 Adams M, Van D M D, Czerny C, et al. In: International Laterite Nickel Symposium. TMS Warrendale, 2004, pp. 193.
80 田庆华, 董波, 郭学益, 等. 中国专利, CN202111641571. X, 2021.
81 Tian Q H, Dong B, Guo X Y, et al. Minerals Engineering, 2021, 17, 107212.
82 田庆华, 董波, 郭学益, 等. 中国专利, CN202111638469. 4, 2021.
83 田庆华, 董波, 郭学益, 等. 中国专利, CN202111544544. 0, 2021.
84 Ma B, Wang C, Yang W, et al. Minerals Engineering, 2013, 45, 151.
85 田庆华, 董波, 郭学益, 等. 中国专利, CN202111546849. 5, 2021.
86 Zhang Z F, Chen S F, Li Y C, et al. Multipurpose Utilization of Mineral Resources, 2022(2), 31(in Chinese).
张振芳, 陈秀法, 李仰春, 等. 矿产综合利用, 2022 (2), 31.
87 Yu Z, Wu Q, Ding T, et al. Inorganic Chemicals Industry, 2022, 54(10), 1.
乜贞, 伍倩, 丁涛, 等. 无机盐工业, 2022, 54(10), 1.
88 Ma Z. Inorganic Chemicals Industry, 2022, 54(10), 22.
马珍. 无机盐工业, 2022, 54(10), 22.
89 Foo Z H, Thomas J B, Heath S M, et al. Environmental Science & Technology, 2023, 57(39), 14747.
90 Su H, Zhu Z W, Wang L N, et al. Materials Reports, 2019, 33(13), 2119(in Chinese).
苏慧, 朱兆武, 王丽娜, 等. 材料导报, 2019, 33(13), 2119.
91 Liu Y H, Deng T L. World Science and Technology Research and Development, 2006, 28(5), 69(in Chinese).
刘元会, 邓天龙. 世界科技研究与发展, 2006, 28(5), 69.
92 Choubey P K, Chung K S, Kim M S, et al. Minerals Engineering, 2017, 110, 104.
93 Zhang Y, Hu Y, Sun N, et al. Hydrometallurgy, 2019, 187, 125.
94 Zhang Y, Xu R, Wang L, et al. Minerals Engineering, 2022, 180, 107468.
95 郑绵平, 郭珍旭, 张永生, 等. 中国专利, CN99105828. 3, 2000.
96 Zhao C L, Sun Z, Zheng X H, et al. The Chinese Journal of Process Engineering, 2018, 18(1), 20(in Chinese).
赵春龙, 孙峙, 郑晓洪, 等. 过程工程学报, 2018, 18(1), 20.
97 Wu Q, Yu J, Bu L, et al. Solar Energy, 2022, 244, 104.
98 杨建元, 夏康明. 中国专利, CN200510085832. 9, 2006.
99 Zheng M P, Zhang Y S, Liu X F, et al. Acta Geologica Sinica, 2016, 90(9), 2123(in Chinese).
郑绵平, 张永生, 刘喜方, 等. 地质学报, 2016, 90(9), 2123.
100 Song J F, Nghiem L D, Li X M, et al. Environmental Science Water Research & Technology, 2017, 3(4), 593.
101 马培华, 邓小川, 温现民. 中国专利, CN200310122238. 3, 2005.
102 Ding T, Zheng M, Lin Y. Acs Omega, 2022, 7(13), 11430.
103 Shi C L. Study on the application of ionic liquid system for extraction of lithium from salt lake brine. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2017.
石成龙. 离子液体体系用于盐湖卤水中提取锂的研究. 博士学位论文, 中国科学院大学, 2017.
104 Li H F, Li L J, Shi D, et al. Journal of Salt Lake Research, 2015, 23(2), 51(in Chinese).
李慧芳, 李丽娟, 时东, 等. 盐湖研究, 2015, 23(2), 51.
105 Shi C L, Song G X, Qin Y R, et al. Chemical Engineering(China), 2020, 48(2), 16(in Chinese).
石成龙, 宋桂秀, 秦亚茹, 等. 化学工程, 2020, 48(2), 16.
106 李传波, 闫东豪, 贾峰, 等. 中国专利, CN202110062197. 1, 2021.
107 Guo Z Y, Ji Z Y, C H Y, et al. Chemical Industry and Engineering Progress, 2020, 39(6), 2294(in Chinese).
郭志远, 纪志永, 陈华艳, 等. 化工进展, 2020, 39(6), 2294.
108 Liu G, Zhao Z, Ghahreman A. Hydrometallurgy, 2019, 187, 81.
109 张治奎, 赵忠伟, 何利华. 中国实用新型专利, CN202021954468. 1, 2020.
110 Gao S, Liu W, Fu D, et al. New Carbon Materials, 2022, 37(3), 435.
111 Lai X, Huang Y, Gu H, et al. Energy Storage Materials, 2021, 40, 96.
112 Georgi-Maschler T, Friedrich B, Weyhe R, et al. Journal of Power Sources, 2012, 207, 173.
113 Zhang G, Yuan X, He Y, et al. Journal of Hazardous Materials, 2021, 406, 124332.
114 Hu J, Zhang J, Li H, et al. Journal of Power Sources, 2017, 351, 192.
115 Li J, Wang G, Xu Z. Journal of Hazardous Materials, 2016, 302, 97.
116 于大伟, 黄柱, 田庆华, 等. 中国专利, CN202011480154. 7, 2021.
117 Xiao J, Li J, Xu Z. Environmental Science & Technology, 2017, 51(20), 11960.
118 Xiao J, Li J, Xu Z. Journal of Hazardous Materials, 2017, 338, 124.
119 Wang R, Lin Y, Wu S. Hydrometallurgy, 2009, 99(3-4), 194.
120 Kang J, Sohn J, Chang H, et al. Advanced Powder Technology, 2010, 21(2), 175.
121 Lee C K, Rhee K. Hydrometallurgy, 2003, 68(1-3), 5.
122 Chen X, Ma H, Luo C, et al. Journal of Hazardous Materials, 2017, 326, 77.
123 He L, Sun S, Song X, et al. Waste Management, 2017, 64, 171.
124 Guan J, Li Y, Guo Y, et al. Acs Sustainable Chemistry & Engineering, 2017, 5(1), 1026.
125 Tanong K, Coudert L, Mercier G, et al. Journal of Environmental Management, 2016, 181, 95.
126 Gratz E, Sa Q, Apelian D, et al. Journal of Power Sources, 2014, 262, 255.
127 Pagnanelli F, Moscardini E, Granata G, et al. Journal of Industrial and Engineering Chemistry, 2014, 20(5), 3201.
128 Meshram P, Pandey B D, Mankhand T R. Chemical Engineering Journal, 2015, 281, 418.
129 Nayaka G P, Pai K V, Santhosh G, et al. Journal of Environmental Chemical Engineering, 2016, 4(2), 2378.
130 Li L, Bian Y, Zhang X, et al. Journal of Power Sources, 2018, 377, 70.
131 Chen X, Luo C, Zhang J, et al. Acs Sustainable Chemistry & Enginee-ring, 2015, 3(12), 3104.
132 Li L, Bian Y F, Zhang X X, et al. Waste Management, 2018, 71, 362.
133 Fu Y, He Y, Qu L, et al. Waste Management, 2019, 88, 191.
134 Gao W, Zhang X, Zheng X, et al. Environmental Science & Technology, 2017, 51(3), 1662.
135 Zhuang L, Sun C, Zhou T, et al. Waste Management, 2019, 85, 175.
136 Hu C, Guo J, Wen J, et al. Journal of Materials Science & Technology, 2013, 29(3), 215.
137 Zheng X, Gao W, Zhang X, et al. Waste Management, 2017, 60, 680.
138 Lv W, Wang Z, Cao H, et al. Acs Sustainable Chemistry & Engineering, 2018, 6(2), 1504.
139 Zhang K, Li B, Wu Y, et al. Waste Management, 2017, 64, 236.
140 Li J, Yang X, Yin Z. Journal of Environmental Chemical Engineering, 2018, 6(5), 6407.
141 Tanong K, Tran L, Mercier G, et al. Journal of Cleaner Production, 2017, 148, 233.
142 Virolainen S, Fini M F, Laitinen A, et al. Separation and Purification Technology, 2017, 179, 274.
143 Chen X, Kang D, Cao L, et al. Separation and Purification Technology, 2019, 210, 690.
144 Freitas M, Garcia E M. Journal of Power Sources, 2007, 171(2), 953.
145 Nishide H, Deguchi J, Tsuchida E. Chemistry Letters, 1976, 5(2), 169.
146 Donato L, Drioli E. Frontiers of Chemical Science and Engineering, 2021, 15(4), 775.
147 Li Z, He G, Zhao G, et al. Separation and Purification Technology, 2021, 277, 119519.
148 Wang H, Huang K, Zhang Y, et al. Acs Sustainable Chemistry & Engineering, 2017, 5(12), 11489.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[3] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[4] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[5] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[6] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[7] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[8] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[9] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[10] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[11] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[12] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[13] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[14] 张理元, 李燕, 税亿, 张菁菁, 吴娜, 阳金菊. 膨润土改性偏钛酸型钛锂离子筛及吸附性能研究[J]. 材料导报, 2023, 37(19): 22030244-7.
[15] 张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed