1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Abstract: Aiming at the serious problem of structural damage of reinforced concrete in the areas with saline soil in the west, we uses soil samples from the areas with severely saline soil in Golmud as electrolytes instead of traditional salt solutions to simulate the actual corrosive environment in saline soil areas and conducts accelerated corrosion tests by employing electrical current. The corrosion-induced deterioration behavior of reinforced concrete in saline soil environment was evaluated by electrochemical parameters, degree of damage, rate of mass loss and corrosion cracking morphology observation. The effective evaluation index of performance deterioration of reinforced concrete was selected, and the dete-rioration model of reinforced concrete in saline soil environment was established based on Weibull distribution parameter estimation for competing failure analysis. The results show that:with the time increase of employing electric current, the corrosion tendency of the internal reinforcement in reinforced concrete gradually increases, and changes from the passivation state to the corrosion activation state, and gradually reaches the higher corrosion rate state. The current density for corrosion and the degree of concrete damage can be used as effective evaluation indexes for the deterioration of reinforced concrete performance, and their variation patterns over time are in accordance with the Weibull distribution function. In saline soil environment, corrosion damage to the reinforcement is the dominant factor in the pre-deterioration of reinforced concrete structures, while concrete damage is the dominant factor in the post-deterioration of reinforced concrete.
1 Yang J S. Acta Pedologica Sinica, 2008(5), 837(in Chinese). 杨劲松. 土壤学报, 2008(5), 837. 2 Leng F G, Ma X X, Ding W, et al. Building Structure, 2011, 41(11), 148(in Chinese). 冷发光, 马孝轩, 丁威, 等. 建筑结构, 2011, 41(11), 148. 3 Liu L X. Journal of Building Materials, 2001(4), 395(in Chinese). 刘连新. 建筑材料学报, 2001(4), 395. 4 Zhang H L, Zhu Y F, Han J C. Journal of Hefei University of Technology(Natural Science), 2015, 38(6), 804(in Chinese). 张洪亮, 朱月风, 韩劲草. 合肥工业大学学报(自然科学版), 2015, 38(6), 804. 5 Qiao H X, Zhu B R, Chen D S. Journal of Basic Science and Engineering, 2017, 25(4), 805(in Chinese). 乔宏霞, 朱彬荣, 陈丁山. 应用基础与工程科学学报, 2017, 25(4), 805. 6 Yang X M, Wu T Y, Chen Y L. Bulletin of the Chinese Ceramic Society, 2016, 35(10), 3410(in Chinese). 杨晓明, 吴天宇, 陈永林. 硅酸盐通报, 2016, 35(10), 3410. 7 Yu W Z, Jin W L, Gao M Z. Journal of Building Structures, 2011, 32(2), 41(in Chinese). 于伟忠, 金伟良, 高明赞. 建筑结构学报, 2011, 32(2), 41. 8 Li S, Yan J Y, Wang X G. Applied Mechanics and Materials, 2013, 357-360, 676. 9 Nossoni G, Harichandran R. Corrosion, 2012, 68(9), 801. 10 Tang F, Lin Z, Chen G, et al. Construction and Building Materials, 2014, 70, 104. 11 El Maaddawy T A, Soudki K A. Journal of Materials in Civil Engineering, 2003, 15(1), 41. 12 Feng Q, Qiao H X, Zhu B R, et al. Journal of Building Materials, 2018, 21(4), 568(in Chinese). 冯琼, 乔宏霞, 朱彬荣, 等. 建筑材料学报, 2018, 21(4), 568. 13 Shi J, Ming J, Sun W. Journal of Materials in Civil Engineering, 2018, 30(7), 04018131. 14 Liu Q. International Journal of Electrochemical Science, DOI:10. 20964/2016. 12. 36. 15 Zhang X Y. Research on anti-corrosion performance and mechanism of concrete in saline soil environment. Master’s Thesis, Taiyuan University of Technology, China, 2020 (in Chinese). 张晓艺. 盐渍土环境下混凝土抗腐蚀性能及机理研究. 硕士学位论文, 太原理工大学, 2020. 16 Su X P, Wang Q, Wang W H, et al. Journal of Jilin University(Earth Science Edition), 2014, 44(4), 1244(in Chinese). 宿晓萍, 王清, 王文华, 等. 吉林大学学报(地球科学版), 2014, 44(4), 1244. 17 Zhang L, Su X P. Advanced Materials Research, 2014, 919-921, 1751. 18 Zhang W Y, Zhang R Y, Xi L. Advanced Materials Research, 2012, 610-613, 485. 19 Mu R. Durability and service life prediction of concrete subjected to the combined action of freezing-thawing, sustained external flexural stress and salt solution. Ph. D. Thesis, Southeast University, 2000 (in Chinese). 慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测. 博士学位论文, 东南大学, 2000. 20 Wang Y, Shi Y X, Wei B M, et al. Journal of Chinese Society For Corrosion and Protection, 1998(2), 29. (in Chinese). 汪鹰, 史苑芗, 魏宝明, 等. 中国腐蚀与防护学报, 1998(2), 29. 21 Jiang L H, Jiang S B, Wang Z Y, et al. Journal of Building Materials, 2017, 20(6), 870(in Chinese). 蒋林华, 姜少博, 王珠银, 等. 建筑材料学报, 2017, 20(6), 870. 22 Fedorková A, Oriňáková R, Oriňák A, et al. Solid State Sciences, 2012, 14(8), 1238. 23 Qin H, Zhang H, Sun D, et al. International Journal of Minerals Metallurgy and Materials, 2015, 22(6), 627. 24 Shang M G, He Z M, Qiao H X, et al. Materials Reports, 2020, 34(22), 22058(in Chinese). 尚明刚, 何忠茂, 乔宏霞, 等. 材料导报, 2020, 34(22), 22058. 25 Shen J S, Liu J Z, Mao J H, et al. Journal of Building Materials, 2020, 23(4), 963(in Chinese). 沈建生, 柳俊哲, 毛江鸿, 等. 建筑材料学报, 2020, 23(4), 963. 26 Wu Y H, Luo S X, Fu Y Y, et al. Surface Technology, 2011, 40(3), 65 (in Chinese). 伍远辉, 罗宿星, 付盈盈, 等. 表面技术, 2011, 40(3), 65. 27 Ghods P, Isgor O B, Mcrae G, et al. Cement and Concrete Composites, 2009, 31(1), 2. 28 Montemor M F, Cunha M P, Ferreira M G, et al. Cement and Concrete Composites, 2002, 24(1), 45. 29 Guan Y G, Sun W, Liao C W. Journal of the Chinese Ceramic Society, 2001, 29(6), 530(in Chinese). 关宇刚, 孙伟, 缪昌文. 硅酸盐学报, 2001, 29(6), 530. 30 Song P Y, Ji X D. Journal of Hydraulic Engineering, 2006, 37(3), 259(in Chinese). 宋玉普, 冀晓东. 水利学报, 2006, 37(3), 259. 31 Yuan C F, Niu D T. Journal of Wuhan University of Technology, 2013, 35(4), 73(in Chinese). 元成方, 牛荻涛. 武汉理工大学学报, 2013, 35(4), 73. 32 Chen F L, Qiao P Z. Materials and Structures, 2015, 48(8), 2697. 33 Hong F, Qiao H X, Wang P H. Emerging Materials Research, 2020, 9(2), 1. 34 Wang X F, Zhang J C, Guo M J, et al. Journal of Ningxia University(Natural Science Edition), 2019, 40(2), 185(in Chinese). 王旭峰, 张家畅, 郭明君, 等. 宁夏大学学报(自然科学版), 2019, 40(2), 185.