Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22010234-9    https://doi.org/10.11896/cldb.22010234
  高分子与聚合物基复合材料 |
包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究
蒋尊宇1, 盛扬1, 孙一新1, 李坚1, Mark Bradley2, 张嵘1,*
1 常州大学材料与工程学院,江苏省环境友好高分子材料重点实验室,江苏 常州 213164
2 School of Chemistry,University of Edinburgh,Edinburgh EH9 3JJ,UK
Synthesis and Synergistic Antibacterial Activity of Cationic Polymer Fluorescent Nanoparticles Loaded with Fluorescent Conjugated Polymer
JIANG Zunyu1, SHENG Yang1, SUN Yixin1, LI Jian1, Mark Bradley2, ZHANG Rong1,*
1 Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
下载:  全 文 ( PDF ) ( 20678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于耐药菌感染问题的日益严重,寻求新的抗菌策略,发展更为有效的抗菌材料成为人们迫切需要解决的重要任务。本工作提供了一种结合阳离子和光动力抗菌机理的协同抗菌新方式,以N-异丙基丙烯酰胺(NIPAM)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,通过微乳液聚合的方法制备了包载有荧光共轭聚合物(FCP)的阳离子荧光纳米微球,分析了微球的组成、粒径分布以及微观形貌等,并检测了其产生单线态氧的能力。对大肠杆菌(E.coli)、金黄色葡萄球菌(S.aureus)和耐甲氧西林金黄色葡萄球菌(MRSA)的抗菌实验结果表明:在微球质量浓度较高(≥ 0.05 mg/mL)时以阳离子抗菌机理为主导,在质量浓度较低(≤ 0.01 mg/mL)时,光动力抗菌机理能够有效提高微球的抗菌能力;m(NIPAM)∶m(DMC)=1∶3的微球在质量浓度为0.01 mg/mL时,经过30 min光照培养后对E.coli和S.aureus的协同灭菌率均能达到95%以上;而m(NIPAM)∶m(DMC)=1∶1的微球在质量浓度为0.05 mg/mL时对MRSA的协同灭菌率最高。与人类细胞共培养实验表明该纳米微球在质量浓度低于0.1 mg/mL时具有良好的生物相容性。因此,该荧光纳米微球能有效结合阳离子和光动力抗菌功能,发挥优良的抗菌能力,有望为耐药菌感染问题的解决提供支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋尊宇
盛扬
孙一新
李坚
Mark Bradley
张嵘
关键词:  光动力抗菌  铵阳离子聚合物  纳米微球  荧光共轭聚合物  耐药菌    
Abstract: As drug-resistant bacteria infection become increasingly serious recently, pursuing new antibacterial strategies and developing more effective antibacterial materials have become an important task. This work provided a new antibacterial method combining photodynamic and cationic antibacterial mechanism. The fluorescent nanospheres were successfully prepared by microemulsion polymerization using N-isopropylacrylamide (NIPAM) and methylacryloyloxyethyltrimethyl ammonium chloride (DMC) as monomers, loaded with a fluorescent conjugated polymer (FCP). The composition, particle size distribution and micro-morphology of the microspheres were analyzed, and their ability to produce singlet oxygen was tested. The fluorescent nanospheres were used to study the antibacterial activity of E.coli, S. aureus and methicillin resistant Staphylococcus aureus (MRSA). The results indicated that the cationic antibacterial mechanism was dominated when the mass concentration of nanospheres was high (≥ 0.05 mg/mL). When the mass concentration was low (≤ 0.01 mg/mL), photodynamic antibacteria activity contributed primarily to the total antibacterial ability of nanospheres. For the nanospheres with m(NIPAM)∶m(DMC) = 1∶3, the sterilization rate of both E.coli and S. aureus reached over 95% after 30 min of illumination when the concentration of nanospheres was 0.01 mg/mL. For the nanospheres with m(NIPAM)∶m(DMC) = 1∶1, the synergistic sterilization rate of MRSA was the highest when the concentration of nanospheres was 0.05 mg/mL. Cytotoxicity assay showed that the nanospheres had good biocompatibility when the mass concentration was lower than 0.1 mg/mL. Therefore, the fluorescent nanospheres can effectively combine cationic and photodynamic antibacterial functions, develop an excellent synergistic antibacterial ability, and are expected to provide support for the solution to the drug-resistant bacterial infection.
Key words:  photodynamic antibacterial    ammonium cationic polymer    nano-microsphere    fluorescent conjugated polymer    drug-resistant bacteria
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  O631  
通讯作者:  *张嵘,常州大学教授,江苏省特聘教授。1992年毕业于成都科技大学(现四川大学)高分子材料学,获学士学位;1995年毕业于中科院成都有机所,获硕士学位;2003年博士毕业于英国谢菲尔德大学。主要从事聚合物微点阵列芯片的制备与应用,(干)细胞的分离、提纯与体外培养相关聚合物的开发,可生物降解聚合物材料的开发,抗/灭菌聚合物材料的研发以及生物医用高分子材料的研发。rzhang@cczu.edu.cn   
作者简介:  蒋尊宇,2019年6月于常州大学获得工学学士学位,现为常州大学材料科学与工程学院硕士研究生,在张嵘教授的指导下进行研究,研究领域为功能高分子材料。
引用本文:    
蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
JIANG Zunyu, SHENG Yang, SUN Yixin, LI Jian, Mark Bradley, ZHANG Rong. Synthesis and Synergistic Antibacterial Activity of Cationic Polymer Fluorescent Nanoparticles Loaded with Fluorescent Conjugated Polymer. Materials Reports, 2023, 37(14): 22010234-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010234  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22010234
1 Fang M, Zheng X, Gu J F. Foreign Medical Antibiotics, 2011, 32(6), 253(in Chinese).
房咪, 郑珩, 顾觉奋. 国外医药抗生素分册, 2011, 32(6), 253.
2 Zhang D, Zhao Y, Gao Y, et al. Journal of Materials Chemistry B, 2013, 1(8), 5100.
3 Shao W, Liu H, Liu H, et al. RSC Advances, 2015, 5(12), 4795.
4 Zuo H J, Wen W H, Wu D C, et al. Progress in Chemical Industry, 2013, 32(3), 604(in Chinese).
左华江, 温婉华, 吴丁财, 等. 化工进展, 2013, 32(3), 604.
5 Ongwae G M, Morrison K R, Allen R A, et al. ACS Infectious Diseases, 2020, 6(6), 1427.
6 Ji W H, Koepsel R R, Murata H, et al. Biomacromolecules, 2017, 18(8), 2583.
7 Wang Y, Chen R, Li T, et al. Industrial & Engineering Chemistry Research, 2019, 59(1), 458.
8 Liang J S, Zeng J M, Li J J, et al. Advances in Chemistry, 2019, 31(9), 1263(in Chinese).
梁敬时, 曾佳铭, 李俊杰, 等. 化学进展, 2019, 31(9), 1263.
9 Garciadiaz M, Huang Y Y, Hamblin M R. Methods, 2016, 109, 158.
10 Khosravi A D, Rostamian J, Moradinegad P. Journal of Medical Sciences, 2008, 8(6), 57.
11 Meeker D G, Jenkins S V, Miller E K, et al. ACS Infectious Diseases, 2016, 2(4), 241.
12 Xu Q L, He P, Wang J W, et al. Dyes and Pigments, 2019, 160, 519.
13 Chu X H, Zhang P, Wang Y L, et al. Carbon, 2021, 176, 126.
14 Yuan Q, Tang Y L. Chinese Science:Chemistry, 2022(1), 14(in Chinese).
袁琼, 唐艳丽. 中国科学:化学, 2022(1), 14.
15 Chen B B, Mi H, Gao S, et al. Journal of Chemical Engineering of Chinese Universities, 2015, 29(4), 252 (in Chinese).
陈彬彬, 米衡, 高山, 等. 高校化学工程学报, 2015, 29(4), 252.
16 Wang G R, Duan Z Q, Sheng Y, et al. Chemical Communications Journal, 2016, 52(69), 10521.
17 Sheng Y, Duan Z Q, Z, Jia Z, et al. ACS Applied Bio Materials, 2018, 1, 888.
18 Liu L L, Sheng Y, Sun Y X, et al. New Materials for Chemical Industry, 2021, 49(6), 112(in Chinese).
刘丽丽, 盛扬, 孙一新, 等. 化工新型材料, 2021, 49(6), 112.
19 Entradas T, Waldron S, Volk M. Journal of Photochemistry and Photo-biology B:Biology, 2020, 204, 111787.
20 Li H, Gong M, Xiao J, et al. Chemical Engineering Journal, 2022, 429, 132600.
[1] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[2] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[3] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[4] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[5] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed