Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22036-22041    https://doi.org/10.11896/cldb.19110065
  无机非金属及其复合材料 |
复合离子(Sr1/3Nb2/3)4+对0.82BNT-0.18BKT陶瓷结构与性能的调控
申艺璇1, 谢航1, 许积文1,2, 杨玲1,2, 王华1,2
1 桂林电子科技大学材料科学与工程学院,桂林 541004
2 桂林电子科技大学,广西信息材料重点实验室,桂林 541004
Structure and Electrical Properties of 0.82BNT-0.18BKT Ceramics Modified by (Sr1/3Nb2/3)4+ Complex Ions
SHEN Yixuan1, XIE Hang1, XU Jiwen1,2, YANG Ling1,2, WANG Hua1,2
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 6412KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用传统固相反应烧结制备了0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5Ti(1-x)(Sr1/3Nb2/3)xO3(BNKT-xSN)无铅陶瓷,研究了B位复合离子(Sr1/3-Nb2/3)4+掺杂量对BNKT-xSN陶瓷微观结构和铁电、介电、储能、应变性能的影响。研究表明:复合离子(Sr1/3Nb2/3)4+固溶到晶格中时,引起晶格畸变,而且极大降低了晶粒尺寸;(Sr1/3Nb2/3)4+的引入破坏了体系内占主导地位的长程铁电畴,电滞回线向细长形转变,铁电相逐渐向弛豫态转变;场致应变表明在x=0.20时,最大的正向应变为0.16%,d33*表现出与单极应变量一样的变化趋势,最大值为277 pm/V;介电频谱表明当x<0.20时,BNKT-xSN陶瓷呈弱铁电相,当x≥0.25时则弛豫相为主导相,而当x=0.20时铁电-弛豫相共存。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申艺璇
谢航
许积文
杨玲
王华
关键词:  BNKT-xSN  复合离子  铁电弛豫  储能  应变    
Abstract: The 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5Ti(1-x)(Sr1/3Nb2/3)xO3 lead-free ceramics are fabricated by the traditional solid state reaction. The effects of B-site (Sr1/3Nb2/3)4+ complex ions on the microstructure, ferroelectric, dielectric, energy storage, and strain properties of BNKT-xSN ceramics are investigated. The results show that (Sr1/3Nb2/3)4+ complex ions dissolves into the lattice of BNKT matrix, and results in lattice distortion. The grain size of BNKT-xSN ceramics is greatly decreased by introducing (Sr1/3Nb2/3)4+ complex ions. The long term ferroelectric order is disturbed by (Sr1/3Nb2/3)4+ complex ions, the hysteresis loops transform from typical rectangle to slimmer shape, and the ferroelectric state gradually changes to the relaxation state. The electric field-induced strain shows that the maximum forward strain of 0.16% is obtained at x=0.20, the d33* shows the similar behavior as the unipolar stain and achieves the maximum value of 277 pm/V. The temperature-dependent dielectric spectrum shows that BNKT-xSN ceramics are weakly ferroelectric state at x<0.20, dominates by relaxation state at x≥0.25, and exists the coexistence of ferroelectric state and relaxation state at x=0.20.
Key words:  BNKT-xSN    complex ion    ferroelectric relaxor    energy storage    strain
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TQ174.1  
基金资助: 国家自然科学基金(11664006);广西自然科学基金(2017GXNSFDA198024;2018GXNSFDA281042;2018GXNSFAA294039)
通讯作者:  csuxjw@126.com   
作者简介:  ;申艺璇,2018年9月起就读于桂林电子科技大学,硕士研究生,研究方向是压电陶瓷和能量收集。许积文,桂林电子科技大学材料科学与工程学院研究员。2014年毕业于陕西师范大学,2015—2017年在广东风华高新科技股份有限公司从事博士后研究。在国内外重要期刊发表学术论文50余篇,获得授权发明专利9件。主要研究方向包括压铁电陶瓷、纳米氧化物粉体、精细陶瓷靶材。
引用本文:    
申艺璇, 谢航, 许积文, 杨玲, 王华. 复合离子(Sr1/3Nb2/3)4+对0.82BNT-0.18BKT陶瓷结构与性能的调控[J]. 材料导报, 2020, 34(22): 22036-22041.
SHEN Yixuan, XIE Hang, XU Jiwen, YANG Ling, WANG Hua. Structure and Electrical Properties of 0.82BNT-0.18BKT Ceramics Modified by (Sr1/3Nb2/3)4+ Complex Ions. Materials Reports, 2020, 34(22): 22036-22041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110065  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22036
1 Jo W, Dittmer R, Acosta M, et al. Journal of Electroceramics, 2012, 29(1), 71.2 Wang H Z, Wang X F, Yu C L, et al. Materials Reports A:Review Papers, 2009, 23(9), 52(in Chinese).王海震, 王秀峰, 于成龙, 等. 材料导报:综述篇, 2009, 23(9), 52.3 Zhang Y R, Li J F, Zhang B P,et al. Journal of Applied Physics, 2008, 103(7), 10.4 Shi W L, Xing Z G, Wang H D, et al. Materials Reports A:Review Papers, 2014, 28(2), 45(in Chinese).石伟丽, 邢志国, 王海斗, 等.材料导报:综述篇, 2014, 28(2), 45.5 Noheda B, Cox D E, Shirane G, et al. Applied Physics Letters, 1999, 74(14), 2059.6 Chen Z W. Materials Reports, 2006, 20(1), 14(in Chinese).陈志武.材料导报,2006, 20(1), 14.7 Deng J, Li L, Chen J, et al. Inorganic Chemistry Communications, 2012, 21, 92.8 Dou R P, Yang L, Xu J W, et al. Electronic Components and Materials, 2019, 38(4), 68 (in Chinese).窦闰镨, 杨玲, 许积文, 等.电子元件与材料, 2019, 38(4), 68.9 Bajpai P K, Singh K N, et al. Physica B: Condensed Matter, 2011, 406(6-7), 1226.10 Levin I, Chan J Y, Scott J H, et al. Journal of Solid State Chemistry, 2002, 166(1), 24.11 Pastor M, Bajpai P K, Choudhary R N P, et al. Journal of Physics and Chemistry of Solids, 2007, 68(10), 1914.12 Zhang T F, Tang X G, Liu Q X, et al. Journal of Physics D: Applied Physics, 2016, 49(9), 095302.13 Zhou R D, Liu T T, Liu M M, et al. Jiangsu Ceramics, 2009, 42(2), 20(in Chinese).周如东, 刘甜甜, 刘萌萌, 等.江苏陶瓷, 2009, 42(2), 20.14 Wu Y, Wang G, Jiao Z, et al. RSC Advances, 2019, 9(37), 21355.15 Hussain A, Malik R A, Maqbool A, et al. Materials Today: Procee-dings, 2018,5(5), 13688.16 Xie H, Yang L, Pang S, et al. Journal of Physics and Chemistry of Solids, 2019, 126, 287.17 Zuo R, Qi H, Fu J, et al. Applied Physics Letters, 2017, 111(13), 132901.18 Schütz D, Deluca M, Krauss W, et al. Advanced Functional Materials, 2012, 22(11), 2285.19 Chen J, Wang Y, Zhang Y, et al. Journal of the European Ceramic Society, 2017,37(6), 2365.20 Liu X, Zhai J, Shen B, et al. Journal of the European Ceramic Society, 2017, 37(4), 1437.21 Liu X, Tan X, et al. Advanced Materials, 2016, 28(3), 574.22 Bai W, Chen D, Zheng P, et al. Journal of the European Ceramic Society, 2017, 37(7), 2591.23 Shi J, Fan H, Liu X, et al. Physica Status Solidi (a), 2014, 211(10), 2388.24 Li T, Lou X, Ke X, et al. Acta Materialia, 2017, 128, 337.25 Wang K, Hussain A, Jo W, et al. Journal of the American Ceramic Society, 2012, 95(7), 2241.26 Anton E M, Jo W, Damjanovic D, et al. Journal of Applied Physics, 2011, 110(9), 094108.27 Liu X, Li F, Li P, et al. Journal of the European Ceramic Society, 2017, 37(15), 4585.
[1] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[2] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[3] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[4] 陈首, 石少卿, 何秋霖, 李季. 金属网增强混凝土抗冲击性能的试验研究与数值模拟[J]. 材料导报, 2020, 34(20): 20046-20052.
[5] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[6] 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020, 34(19): 19173-19182.
[7] 何亭睿, 王一平, 李雄杰, 陈朋, 胡悫睿, 杨颖, 宁洪龙. 可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能[J]. 材料导报, 2020, 34(18): 18152-18158.
[8] 刘博, 王社良, 李彬彬, 杨涛, 李昊, 刘洋, 何露. 一种考虑应变幅值和应变速率影响的超弹性SMA宏观唯象本构模型[J]. 材料导报, 2020, 34(14): 14161-14167.
[9] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[10] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[11] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[12] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[13] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[14] 郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019, 33(Z2): 20-23.
[15] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed