Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23040058-12    https://doi.org/10.11896/cldb.23040058
  无机非金属及其复合材料 |
碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定
赵华1,2,*, 唐杰1,3, 刘伟男1
1 南昌大学工程建设学院,南昌 330031
2 江西省交通科学研究院有限公司,南昌 330052
3 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
Study on the Self-healing Behavior of Silicon Carbide Asphalt Mastic and Determination of the Optimal Dosage
ZHAO Hua1,2,*, TANG Jie1,3, LIU Weinan1
1 School of Infrastructure and Engineering, Nanchang University, Nanchang 330031, China
2 Jiangxi Transportation Research Institute Co., Ltd., Nanchang 330052, China
3 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
下载:  全 文 ( PDF ) ( 14351KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自愈合技术在延长沥青路面使用寿命方面有着巨大优势。明晰沥青材料的自愈合行为发展和提升其自愈合性能是将它应用于实际工程的前提。微波加热是加速具有吸波性的沥青材料微裂纹愈合的有效方法,本工作以碳化硅为吸波剂制备粉胶比为0.9的自愈合沥青胶浆,提升沥青胶浆的吸波性能和路用性能,通过微观观察分析碳化硅掺入对沥青流变学性能、力学性能和自愈合性能的影响,以及在微波辐照下沥青胶浆的升温情况。结果表明,沥青胶浆的自愈合起始温度、自愈合最佳温度及表面弹性模量都随碳化硅替换比例增大而呈现“双峰曲线”变化,这归因于碳化硅-石灰岩矿粉复合填料的级配变化所形成的不同界面结构使得沥青胶浆的性能发生变化。基于上述性能指标,提出了最佳碳化硅体积替换比例为40%。此外,微波测试也表明最佳替换掺量为40%(体积分数,下同)。综合路用性能及自愈合性能,在粉胶比为0.9的条件下,碳化硅最佳替换掺量为40%,研究结果可为碳化硅吸波沥青材料的开发设计提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵华
唐杰
刘伟男
关键词:  沥青胶浆  自愈合  碳化硅  微波加热  微观机理    
Abstract: Self-healing technology has great advantages in prolonging the service life of asphalt pavement. Understanding the development of the self-healing behavior of bituminous material and enhancingits self-healing capacity are the prerequisite for its application in engineering. Microwave heating is an effective method for accelerating the healing of cracks in wave-absorbing asphalt materials. In this work, silicon carbide was used as the absorbing material to prepare self-healing asphalt mastic with filler-bitumen ratio of 0.9, which can improve the absorbing property and road performance of asphalt mastic. The effects of silicon carbide on rheological, mechanical and self-healing properties of asphalt were analyzed microscopically, and the heating behavior under microwave irradiation. The results show that the initial temperature of self-healing, the optimum temperature of self-healing and the elastic modulus of asphalt mastic show a ‘bimodal curve’ with the increase of silicon carbide replacement ratio. The reason for this is the change in particle gradation of the silicon carbide - limestone powder composite filler, which forms a different interfacial structure resulting in a change in the properties of the asphalt mastic. Based on the above parameters, the optimal volume replacement ratio of 40% is proposed. In addition, microwave test also shows that the optimal replacement dosage is 40vol%. Under the filler-bitumen ratio of 0.9, considering the road performance and self-healing property, the optimal replacement dosage of silicon is 40vol%. The results can provide theoretical reference for the development and design of silicon carbide absorbing asphalt material.
Key words:  asphalt mastic    self-healing    silicon carbide    microwave heating    microscopic mechanism
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  U414  
基金资助: 国家自然科学基金(52168062);2021年度江西省博士后研究人员科研择优资助项目
通讯作者:  * 赵华,南昌大学工程建设学院副教授、硕士研究生导师。2016年长安大学道路与铁道专业博士毕业后到南昌大学工作至今。目前主要从事道路工程材料的绿色建养等方面的研究工作。zhaohua@ncu.edu.cn   
引用本文:    
赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
ZHAO Hua, TANG Jie, LIU Weinan. Study on the Self-healing Behavior of Silicon Carbide Asphalt Mastic and Determination of the Optimal Dosage. Materials Reports, 2024, 38(14): 23040058-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040058  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23040058
1 Bhasin A, Little D N, Bommavaram R, et al. Road Materials and Pavement Design, 2008, 9(sup1), 219.
2 Zheng J L, Lv S T, Liu C C. Chinese Science Bulletin, 2020, 65(30),3219.
3 Li J, Ji X, Fang X, et al. Construction and Building Materials, 2022, 330, 127085.
4 Peng Z, Hwang J Y. International Materials Reviews, 2015, 60(1), 30.
5 Bevacqua M T, Isernia T, Praticò F G, et al. Automation in Construction, 2021, 121, 103426.
6 Guo D D. Research on techniques of snow-melting and deicing pavement basing on microwave and magnet coupling effect. Ph. D. Thesis, Chang'an University, China, 2011 (in Chinese).
郭德栋. 基于微波与磁铁耦合效应的融雪除冰路面技术研究.博士学位论文, 长安大学, 2011.
7 Zhao H. Microwave absorbing properties and road performance of asphalt mixture doped with natural magnetite. Ph. D. Thesis, Chang'an University, China, 2016 (in Chinese)
赵华. 掺磁铁矿料沥青混合料微波特性与路用性能研究.博士学位论文, 长安大学, 2016.
8 Xiang Y K, Liu W Z, Zhao Y, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 667 (in Chinese).
向阳开, 刘威震, 赵毅,等.硅酸盐通报, 2022, 41(2), 667.
9 Fan X Z. Study on preparation of microwave absorbing asphalt mixture with low-grade pyrite cinder. Master's Thesis, Southwest University of Science and Technology, China, 2015 (in Chinese).
范晓正. 利用低品位硫铁矿烧渣制备吸波沥青混合料的研究.硕士学位论文, 西南科技大学, 2015.
10 He J, Li C, Tao G Y, et al. Journal of Wuhan University of Technology(Transportation Science&Engineering), 2018, 42(1), 97 (in Chinese).
贺军, 李超, 陶关玉, 等.武汉理工大学学报(交通科学与工程版), 2018, 42(1), 97.
11 Li C, Wu S, Chen Z, et al. Construction and Building Materials, 2018, 189, 757.
12 Jahanbakhsh H, Karimi M M, Jahangiri B, et al. Construction and Buil-ding Materials, 2018, 174, 656.
13 Gao J, Guo H, Wang X, et al. Journal of Cleaner Production, 2019, 206, 1110.
14 Norambuena-Contreras J, Aguilar V G, Gonzalez-Torre I. Construction and Building Materials, 2015, 94, 45.
15 González A, Norambuena-Contreras J, Storey L, et al. Construction and Building Materials,2018, 159, 164.
16 González A, Norambuena-Contreras J, Storey L, et al. Journal of Environmental Management, 2018, 214, 242.
17 Yalcin E. Construction and Building Materials, 2021, 286, 122965.
18 Ding S N. Study on the modification of wave absorption properties of silicon carbide. Master's Thesis, Xiamen University, China, 2015 (in Chinese).
丁绍楠. 碳化硅吸波性能改性的研究. 硕士学位论文, 厦门大学, 2015.
19 Mo S X, Kong L Y, Wang N. Journal of Guangxi University: Natural Science Edition, 2011,36(4), 616(in Chinese).
莫石秀, 孔令云, 王娜.广西大学学报(自然科学版), 2011, 36(4), 616.
20 Pei Z S. Analysis of surface microscopic characteristics and influencing factors of aged asphalt materials based on the principle of AFM. Master's Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
裴忠实. 基于AFM的老化沥青表面微观特征及影响因素分析. 硕士学位论文, 哈尔滨工业大学, 2016.
21 Menozzi A, Garcia A, Partl M N, et al. Construction and Building Materials, 2015, 74, 162.
22 Zhao Y Q. Kuai H D. Chen F, et al. Technology of Highway and Transport, 2018, 34(1), 37(in Chinese).
赵友权, 蒯海东, 陈芳, 等.公路交通技术, 2018, 34(1), 37.
23 Xu H. Research on thermal induced self-healing performance of asphalt and asphalt mixture. Master's Thesis, Chongqing Jiaotong University, China, 2021 (in Chinese).
徐浩. 沥青及沥青混合料热诱导自愈性能研究.硕士学位论文, 重庆交通大学, 2021.
24 Li H C. Study on gradient healing and aging characteristics of asphalt concrete via electromagnetic induction heating. Ph. D. Thesis, Wuhan University of Technology, China, 2020 (in Chinese).
李贺川. 电磁感应加热沥青混凝土梯度愈合与老化特性研究.博士学位论文, 武汉理工大学, 2020.
25 Wang Y F, Pang L, Xu H Q, et al. Journal of Wuhan University of Technology(Transportation Science & Engineering) ,2022, 46(4), 696(in Chinese).
王亚飞, 庞凌, 徐海钦, 等. 武汉理工大学学报(交通科学与工程版), 2022, 46(4), 696.
26 Gong M, Yang J, Wei J, et al. Transportation Research Record, 2015, 2506(1), 100.
27 Xiang H, Zhang W W, Liu P, et al. Journal of Chongqing Jiaotong University(Natural Science) ,2019, 38(10), 56 (in Chinese).
向浩, 张文武, 刘鹏, 等.重庆交通大学学报(自然科学版), 2019, 38(10), 56.
28 Zhu H Z, Fan S P, Li Z H. Journal of Building Materials, 2018, 21(3), 426(in Chinese).
朱洪洲, 范世平, 李正浩.建筑材料学报, 2018, 21(3), 426.
29 Yue J C, Zhang S P, Yue M J, et al. Journal of Zhengzhou University(Engineering Science), 2020, 41(4), 12(in Chinese).
乐金朝, 张世兴, 乐明静, 等. 郑州大学学报: 工学版, 2020, 41(4), 12.
30 Wu D Y, Meure S, Solomon D. Progress in Polymer Science, 2008, 33(5), 479.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[3] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[4] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[5] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[6] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[7] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[8] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[9] 许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
[10] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[11] 蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
[12] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[13] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[14] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[15] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed