Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22110326-7    https://doi.org/10.11896/cldb.22110326
  无机非金属及其复合材料 |
酸-镁改性蒙脱土的制备及对磷酸盐吸附性能的研究
余义昌1, 彭枫1, 姜德彬2, 李凯霖3, 陈婷婷1, 马腾飞1, 封丽1,*
1 重庆市生态环境科学研究院,中国环境科学研究院西南分院,重庆 401147
2 重庆工商大学环境与资源学院,重庆 400067
3 重庆大学材料科学与工程学院,重庆 400044
Preparation of Acid-Magnesium Modified Montmorillonite and Its Adsorption Performance for Phosphate
YU Yichang1, PENG Feng1, JIANG Debin2, LI Kailin3, CHEN Tingting1, MA Tengfei1, FENG Li1,*
1 Chongqing Academy of Eco-Environmental Science, Southwest Branch of Chinese Academy of Environmental Sciences, Chongqing 401147, China
2 School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
3 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 7071KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以蒙脱土为原材料,盐酸和七水合硫酸镁为改性剂,通过浸渍法合成酸-镁改性蒙脱土(MgHMT),研究其对磷酸盐的吸附性能。并结合扫描电子显微镜(SEM)、X射线衍射仪(XRD)、比表面积与孔径分析(BET)和X射线光电子能谱分析(XPS)对其进行形貌结构分析。结果表明,改性前后材料的表面结构无明显变化,但其比表面积减小,平均孔径增大,Mg2+以插层电子的形式负载到蒙脱土上。酸-镁改性蒙脱土对磷酸盐的吸附可在10 min内达到平衡,吸附过程符合Langmuir吸附模型,其吸附性能相比改性前提高2.1倍。吸附过程以化学吸附为主,氨氮的存在有助于磷酸盐的吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余义昌
彭枫
姜德彬
李凯霖
陈婷婷
马腾飞
封丽
关键词:  改性  蒙脱土  磷酸盐  吸附    
Abstract: The acid-Mg modified montmorillonite (MgHMT) was prepared by dipping method using montmorillonite as raw materials, hydrochloric acid and magnesium sulfate heptahydrate as modifiers. Its adsorption performance for phosphates was studied. Scanning electron microscopy (SEM), X-Ray Diffractomer, surface area and pore size analysis (BET), X-ray photoelectron spectroscopy (XPS) were used for the analysis of morphology and structure. The results showed that the surface structure of the material did not change significantly after the modification, but its specific surface area decreased and the average pore diameter increased. Mg ions are loaded onto montmorillonite in the form of intercalated electrons. The adsorption of phosphate by HHMT can reach adsorption equilibrium within 10 min. The adsorption process conformed to the Langmuir adsorption model, and its adsorption performance was 2.1 times higher than that of pure montmorillonite. The adsorption process was dominated by chemical adsorption, and the presence of ammonia nitrogen promoted the adsorption of phosphate.
Key words:  modification    montmorillonite    phosphate    adsorption
发布日期:  2023-12-19
ZTFLH:  TB34  
  X52  
基金资助: 重庆市技术创新与应用示范专项(cstc2018jszx-zdyfxmX0013);重庆市科研机构绩效激励引导专项(cstc2019jxjl50004)
通讯作者:  *封丽,2005年6月、2008年6月、2022年6月分别于重庆师范大学获得理学学士学位,重庆大学获得理学硕士学位和工程博士学位。现为重庆市生态环境科学研究院(中国环境科学研究院西南分院)水环境工程技术创新中心主任,正高级工程师。目前主要研究领域为流域水污染治理、环境规划、环境标准编制、环境功能材料等。发表各类论文40余篇,获多项授权专利。cqhky_fl@163.com   
作者简介:  余义昌,2013年6月、2018年9月分别于中南民族大学和同济大学获得理学学士学位和工学博士学位。现为重庆市生态环境科学研究院(中国环境科学研究院西南分院)水环境工程技术创新中心高级工程师。目前主要研究领域为流域水污染治理,环境功能材料研发等。发表各类论文20余篇,获授权专利1项。
引用本文:    
余义昌, 彭枫, 姜德彬, 李凯霖, 陈婷婷, 马腾飞, 封丽. 酸-镁改性蒙脱土的制备及对磷酸盐吸附性能的研究[J]. 材料导报, 2023, 37(24): 22110326-7.
YU Yichang, PENG Feng, JIANG Debin, LI Kailin, CHEN Tingting, MA Tengfei, FENG Li. Preparation of Acid-Magnesium Modified Montmorillonite and Its Adsorption Performance for Phosphate. Materials Reports, 2023, 37(24): 22110326-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110326  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22110326
1 Wang P, Wang H J, Niu G Q, et al. Contemporary Chemical Industry, 2020, 49(5), 773 (in Chinese).
王品, 王海娟, 牛国庆, 等. 当代化工, 2020, 49(5), 773.
2 Sudhakaran S, Abraham E V,Mahadevan H, et al. Surfaces and Interfaces, 2021, 27, 101468.
3 Qin D, Chang S, Qiao M, et al. Turkish Journal of Chemistry, 2019, 43(1), 50.
4 Saleh I A, Zouari N, Al-Ghouti M A. Environmental Technology & Innovation, 2020, 19, 101026.
5 Cao X W, Zhou X, Hao M Y, et al. Desalination and Water Treatment, 2021, 215, 98.
6 Wang J Y, Wang Y, Du B B, et al. Materials Reports, 2019, 33(6), 2076 (in Chinese)
王佳员, 王运, 杜保保, 等. 材料导报, 2019, 33(6), 2076.
7 Zhang Q, Zhang Y L, Liu S S, et al. Food Chemistry, 2021, 343, 129391.
8 Rathinam K, Atchudan R, Jebakumar T N, et al. Journal of Environmental Chemical Engineering, 2021, 9(5), 106053.
9 Rajesh Kumar, Sunita Verma, Geeta Harwani, et al. Journal of Water Chemistry and Technology, 2021, 43(4), 321.
10 Geng J M, Lan Y H, Liu S S, et al. Nanomaterials, 2022, 12(9), 1428.
11 Das T K, Scott Q, Bezbaruah A N. Chemosphere, 2021, 281, 130837.
12 Li J R, Yin C S, Ma H Y, et al. Chemical Technology and Development, 2021, 50(1), 25 (in Chinese)
李璟睿, 尹陈霜, 马海燕, 等. 化工技术与开发, 2021, 50(1), 25.
13 Imanipoor, Javad Ghafelebashi, Amirhossien Mohammadi, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 611, 125792.
14 Shi W, Chu Y, Xia M, et al. Ecotoxicology and Environmental Safety, 2021, 213, 111993.
15 Sun W, Zeng H, Tang T. The Journal of Physical Chemistry A, 2021, 125(4), 1025.
16 Qi X, Zeng Q, Su T, et al. Journal of Hazardous Materials, 2021, 402, 123359.
17 Ma L, Zhu J, Xi Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 497, 63.
18 Salim N A A, Lazim Z M, Abdullah N H, et al. Biointerface Research in Applied Chemistry, 2021, 11(5), 12831.
19 Wu K, Li Y, Liu T, et al. Applied Surface Science, 2019, 478, 539.
20 Ownby M, Desrosiers D A, Vaneeckhaute C. NPJ Clean Water, 2021, 14(4), 1.
21 Ji J T, Peng Y Z, Wang B, et al. Water Research, 2020, 170, 115363.
22 Zhao J, Xin M, Zhang J, et al. Chemosphere, 2020, 243, 125380.
23 He Q, Song J, Zhang W, et al. Journal of Hazardous Materials, 2020, 382, 121043.
24 Bacelo H, Pintor A M A, Santos S C R, et al. Chemical Engineering Journal, 2020, 381, 122566.
25 Yu Y C, Hu Z J, Wang Y, et al. International Journal of Mineral Processing, 2017, 162, 1.
26 Shen R, Yu Y C, Wang Y, et al. Nano, 2018, 13(10), 109.
27 Ugochukwu U C, Head I M, Manning D A C. Environmental Science and Pollution Research, 2013, 20(12), 8881.
28 Yan W, Zeng X, Xie A . Bulletin of the Korean Chemical Society, 2011, 32(6), 1936.
29 Pan Y F, Gao Y T, Hu J Y, et al. Journal of Materials Chemistry B, 2021, 9, 404.
30 Wu H, Feng J, Zhang J, et al. Biomedical Materials, 2020, 15, 055002.
31 Sattar T, Lee S H, Sim S J, et al. International Journal of Hydrogen Energy, 2020, 45, 19567.
32 Yu Y C, Hu Z J, Chen Z Y, et al. RSC Advances, 2016, 6(100), 97523.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[3] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[4] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[5] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[6] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[7] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[8] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[9] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[10] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[11] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[12] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[13] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[14] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[15] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed