Abstract: Preparation of porous complex materials using small molecular surfactant as the stabilizer of high internal emulsion has potential harms to the environment. In this study, porous composites (Tween 85/SiO2-PAA) were prepared by in-situ polymerization after high internal phase monomer emulsion with an internal phase volume fraction of 75% (HIPE) was prepared under the help of acrylic acid and N, N- methyl double acrylic acid monomer solution as continuous phase, peanut oil as dispersed phase, Tween 85/SiO2 (mass ratio 1∶1) as composite stabilizer. Scanning electron microscopy (SEM) showed that porous composites appeared concave convex two-dimensional interpenetrating pore structure, infrared spectra (FTIR) showed that many active groups existed in the polymer molecular structure such as carboxyl, amino and silicon hydroxyl. The composites presented a good adsorption capacity for low concentration lead ions, and the removal rate was up to 97.62%. The adsorption process conformed to the first-order kinetic and Langmuir isothermal adsorption model. The maximum saturated adsorption capacity was 89.35 mg/g, and the adsorption mechanism was the chemical interaction between -COOH, -NH2, -Si-OH and lead ions.
梁宁, 陆小凤, 周街荣, 黄丽葵, 王军正. 高内相乳液原位聚合制备多孔复合材料吸附铅离子[J]. 材料导报, 2023, 37(15): 22040290-7.
LIANG Ning, LU Xiaofeng, ZHOU Jierong, HUANG Likui, WANG Junzheng. Preparation of Porous Composite Material by In-situ Polymerization of High Internal Phase Emulsion for Adsorption of Lead Ions. Materials Reports, 2023, 37(15): 22040290-7.
1 Morsanu I, Teodosiu C, Padurayu C, et al. New Biotechnology, 2017, 39(Part. A), 110. 2 Barakat M A. Arabian Journal of Chemistry, 2011, 4(4), 361. 3 Azimi A, Azari A, Rezakazemi M, et al. ChemBioEng Reviews, 2017, 4(1), 37. 4 Kushwaha A K, Gupta N, Chattopadhya M C. Arabian Journal of Che-mistry, 2017, 10, S81. 5 Mahar F K,He L, Wei K, et al. Chemosphere, 2019, 225, 360. 6 Wang J Y, Wang L, Zhang W L, et al. Chemical Industry and Enginee-ring Progress, 2019, 38(8), 3838(in Chinese). 王靖宜, 王丽, 张文龙, 等. 化工进展, 2019, 38(8), 3838. 7 Sun M, Zhao T, Li Z, et al. Ceramics International, 2016, 42(14), 15926. 8 Wang Q, Tang P, Ge X, et al. Applied Surface Science, 2018, 462, 118. 9 Yong X Y, Hu Q S, Zhou E R, et al. ACS Biomaterials Science and Engineering, 2019, 5(10), 5072. 10 Li K Y, Zhang Z, Dong S L. Chinese Science Bulletin, 2021, 66(14), 1703(in Chinese). 李可扬, 张卓, 董姝丽. 科学通报, 2021, 66(14), 1703. 11 Zhang S C, Sun W, Pi M. Journal of Functional Polymers, 2018, 31(3), 273(in Chinese). 张守村, 孙武, 皮茂. 功能高分子学报, 2018, 31(3), 273. 12 Tao L, Zhong M M, Chen J, et al. Green Chemistry, 2018, 20(1), 188. 13 Tan J, Chen Z. Journal of Colloid and Interface Science, 2019, 546, 285. 14 Yu C M, Zeng S W, Liu Y Y, et al. Materials Reports, 2021, 35(4), 4200(in Chinese). 余传明, 曾圣威, 刘叶原, 等. 材料导报, 2021, 35(4), 4200. 15 Aldakhil F, Sirry S M, Al-Rifai A, et al. Journal of Molecular Liquids, 2018, 269, 775. 16 Torrik E, Soleimani M, Rayanchi M T. International Journal of Environmental Research, 2019, 13(5), 813. 17 Weber W J, Morris J C. Journal of the Sanitary Engineering Division, 1963, 89(2), 31. 18 Hu L, Zheng J Y, Li Q, et al. ACS Omega, 2021, 6(26), 16955. 19 Singha A S, Guleria A. Journal of Environmental Chemical Engineering, 2014, 2(3), 1456. 20 Xie B M, Zhu H K, Yang Y, et al. Fine Chemicals, 2018, 35(1), 108(in Chinese). 谢标明, 朱和康, 杨越, 等. 精细化工, 2018, 35(1), 108. 21 Lu T, Zhu Y, Wang W, et al. Chemical Engineering Journal, 2018, 361, 1411. 22 Fan S L, Huang Z Q, Zhang Y J, et al. Bioresource Technology, 2018, 274, 48. 23 Yang X W, Li Z G, Li P Z, et al. Fine Chemicals, 2021, 38(1), 162(in Chinese). 杨晓武, 李志刚, 李培枝, 等. 精细化工, 2021, 38(1), 162. 24 Turmanoya S C. Express Polymer Letters, 2007, 1(9), 585. 25 Hou S S, Li X J, Wang H L, et al. RSC Advances, 2017, 7(82), 51993.